Deployment of a Geographical Information System Life Cycle Assessment Integrated Framework for Exploring the Opportunities and Challenges of Enhanced Oil Recovery Using Industrial CO2 Supply in the United States

2016 ◽  
Vol 4 (9) ◽  
pp. 4743-4751 ◽  
Author(s):  
Mohammad Abotalib ◽  
Fu Zhao ◽  
Andres Clarens
2018 ◽  
Vol 42 (4) ◽  
pp. 763-794 ◽  
Author(s):  
Gregori Galofré-Vilà ◽  
Aravinda Meera Guntupalli ◽  
Bernard Harris ◽  
Andrew Hinde

During the last 30 years, economic and social historians have collected and analyzed large amounts of anthropometric data to explore key aspects of the human past. Attention has also been devoted to the examination of factors that can exert an influence on stature. This article outlines the different ways in which climate might influence stature, either directly or indirectly. It then uses geographical information system software to explore the relationship between variations in temperature and precipitation and the average heights of men in France, India, Mexico, Spain, and the United States over the last two centuries. It is possible to observe an influence of climate on stature in some countries, especially during the nineteenth century, but the relationship weakens across time and largely disappears in recent decades. The attenuation of this relationship is attributed to a process of “technophysio evolution” as countries modernized and developed economically.


2016 ◽  
Vol 131 ◽  
pp. 509-522 ◽  
Author(s):  
Wesley Ingwersen ◽  
Maria Gausman ◽  
Annie Weisbrod ◽  
Debalina Sengupta ◽  
Seung-Jin Lee ◽  
...  

2008 ◽  
Vol 16 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Edgar G. Hertwich ◽  
Martin Aaberg ◽  
Bhawna Singh ◽  
Anders H. Strømman

1981 ◽  
Vol 8 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Douglas Argyle Campbell

This survey has described the foreseeable environmental and economic impacts of enhanced oil-recovery (EOR) on U.S. oil production between 1980 and 2000. It has indicated that EOR production may be expected to rise from the approximately 4% of total U.S. oil production in 1980, to the projected approximations of 10.5% in 1985, 18.5% in 1990, 23% in 1995, and perhaps 30% in 2000. These percentages are substantial, particularly as this form of oil production has been, up until recently, quite limited. Many of the processes are still in the laboratory stage of development—particularly chemical and microbiological processes. With continued laboratory experimentation and field research, it is possible that the percentages could be even greater than the above suggestions as we reach into the 21st Century.The potential for EOR is very considerable and probably great, as it could involve some two-thirds of all the oil already identified in the United States and assumed to be unrecoverable by primary or secondary means. The U.S. Department of Energy (DOE) has given important incentives to the EOR industry to make such increased production worth while through raising prices to compensate for the cost of equipment, and deducting expenditure on such equipment from a new ‘Windfall Profit Tax’.Along with EOR's economic potential, there are two major ecological dangers: air pollution through thermal processes, and ground-water pollution through chemical processes. It is essential to the well-being of the United States that clean air standards be adhered to, and that the equipment necessary to purify the air (particularly in California) be available and operate to reduce emissions.A great deal more research needs to be undertaken towards developing safeguards to ensure that drinkingwater is not contaminated by dangerous chemicals which may be used in ‘chemical flooding’ of depleted oil-wells. Many of these chemicals have merely ‘come out of the laboratory’ and are sold by chemical companies without sufficient field-testing. How far these chemicals could travel underground must still be determined. It is also important to ensure that carbon dioxide, fed into a geological formation, can be recaptured and re-injected without escaping into the atmosphere, where there is the potential danger of a global ‘greenhouse effect’ upon the world's temperature. Finally, it is important to safeguard the Earth against microbes which could be injected into its geological strata without sufficient knowledge of their impact on the ecology of the Earth. Thus, much environmental research will be called for with these new methods of producing oil for Man's use.This study has reviewed the four major methods of EOR that are currently being utilized or proposed— thermal processes, miscible and semi-miscible processes, chemical processes, and microbiological processes, and found that they could all have ongoing possibilities.Given appropriate environmental safeguards, EOR should become a major force in the production of energy for the United States over the next 20 years, and it seems reasonable to expect that much the same could apply to other parts of the world. However, it is important that safeguarding the environment should guide the DOE in terms of its incentive programmes for specific processes.


Sign in / Sign up

Export Citation Format

Share Document