scholarly journals Throughput, Reliability, and Yields of a Pilot-Scale Conversion Process for Production of Fermentable Sugars from Lignocellulosic Biomass: A Study on Feedstock Ash and Moisture

2020 ◽  
Vol 8 (4) ◽  
pp. 2008-2015 ◽  
Author(s):  
David A. Sievers ◽  
Erik M. Kuhn ◽  
Vicki S. Thompson ◽  
Neal A. Yancey ◽  
Amber N. Hoover ◽  
...  
2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18147-18159 ◽  
Author(s):  
José A. Pérez-Pimienta ◽  
Gabriela Papa ◽  
John M. Gladden ◽  
Blake A. Simmons ◽  
Arturo Sanchez

A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.


2012 ◽  
Vol 06 ◽  
pp. 715-720
Author(s):  
Maki Takano ◽  
Kazuhiro Hoshino

To develop biofuel production from waste lignocellulosic biomass materials the rice straw was selected one of renewable material and the degradation condition about pretreatment and enzymatic hydrolysis to obtain effectively fermentable sugars was investigated. Rice straw was pretreated by five kinds of methods and then the components ratio of rice straw was examined. First, the steam explosion was selected based on the degradability and the requirement energy. In addition, the best suitable combination of two cellulases to effective and economical hydrolyze was determined from the degradability of these pretreated rice straws. In the simultaneous saccharification and fermentation of the steam explosion rice straw by combining cellulase cocktail and a novel fermenting fungus, 13.2 g/L ethanol was able to product for 96 h.


2015 ◽  
Vol 185 ◽  
pp. 316-323 ◽  
Author(s):  
Ana Belen Diaz ◽  
Marcia Maria de Souza Moretti ◽  
Carolina Bezerra-Bussoli ◽  
Christiane da Costa Carreira Nunes ◽  
Ana Blandino ◽  
...  

Energy ◽  
2017 ◽  
Vol 118 ◽  
pp. 312-323 ◽  
Author(s):  
Yafei Shen ◽  
Shili Yu ◽  
Shun Ge ◽  
Xingming Chen ◽  
Xinlei Ge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document