scholarly journals The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production

RSC Advances ◽  
2020 ◽  
Vol 10 (31) ◽  
pp. 18147-18159 ◽  
Author(s):  
José A. Pérez-Pimienta ◽  
Gabriela Papa ◽  
John M. Gladden ◽  
Blake A. Simmons ◽  
Arturo Sanchez

A pilot-scale continuous tubular reactor increases enzymatic digestibility of four different feedstocks by removing xylan and effectively achieving economically viable ethanol concentrations.

ChemSusChem ◽  
2012 ◽  
Vol 6 (1) ◽  
pp. 110-122 ◽  
Author(s):  
Christos K. Nitsos ◽  
Konstantinos A. Matis ◽  
Kostas S. Triantafyllidis

2019 ◽  
pp. 61-72
Author(s):  
Amrita Saha ◽  
Soumyak Palei ◽  
Minhajul Abedin ◽  
Bhaswati Uzir

2018 ◽  
Vol 37 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Ismail Cem Kantarli ◽  
Stylianos D Stefanidis ◽  
Konstantinos G Kalogiannis ◽  
Angelos A Lappas

The objective of this study was to examine the potential of poultry wastes to be used as feedstock in non-catalytic and catalytic fast pyrolysis processes, which is a continuation of our previous research on their conversion into biofuel via slow pyrolysis and hydrothermal conversion. Both poultry meal and poultry litter were examined, initially in a fixed bed bench-scale reactor using ZSM-5 and MgO as catalysts. Pyrolysis of poultry meal yielded high amounts of bio-oil, while pyrolysis of poultry litter yielded high amounts of solid residue owing to its high ash content. MgO was found to be more effective for the deoxygenation of bio-oil and reduction of undesirable compounds, by converting mainly the acids in the pyrolysis vapours of poultry meal into aliphatic hydrocarbons. ZSM-5 favoured the formation of both aromatic compounds and undesirable nitrogenous compounds. Overall, all bio-oil samples from the pyrolysis of poultry wastes contained relatively high amounts of nitrogen compared with bio-oils from lignocellulosic biomass, ca. 9 wt.% in the case of poultry meal and ca. 5–8 wt.% in the case of poultry litter. This was attributed to the high nitrogen content of the poultry wastes, unlike that of lignocellulosic biomass. Poultry meal yielded the highest amount of bio-oil and was selected as optimum feedstock to be scaled-up in a semi-pilot scale fluidised bed biomass pyrolysis unit with the ZSM-5 catalyst. Pyrolysis in the fluidised bed reactor was more efficient for deoxygenation of the bio-oil vapours, as evidenced from the lower oxygen content of the bio-oil.


Biofuels ◽  
2011 ◽  
pp. 229-250 ◽  
Author(s):  
Parameswaran Binod ◽  
K.U. Janu ◽  
Raveendran Sindhu ◽  
Ashok Pandey

Author(s):  
Oleksandr Obodovych ◽  
◽  
Oleksandr Solovey ◽  

The development of the biofuel industry and the production of bioethanol and using it as a fuel in the world in general and in Ukraine in particular are analyzed in the paper. Bioethanol is mostly produced from sugar- and starch-containing raw materials. It is noted that bioethanol is obtained mainly from molasses in Ukraine. Molasses is a by-product of sugar beet production. The prospects of second-generation bioethanol production made from unfit for human consumption lignocellulosic biomass such as agricultural by-products, forestry residues, municipal waste are considered. Pretreatment of lignocellulosic biomass is the main task in bioethanol production from such raw materials. Partial or complete hydrolysis of hemicellulose and the conversion of crystalline cellulose into an amorphous state are required to destroy the strong structure of the lignocellulosic complex and remove lignin for further processing. The method of Discrete-Pulse Energy Input was used to intensify the production of bioethanol from lignocellulosic biomass. The method allows shortening the duration of pretreatment, hydrolysis and fermentation, increasing the amount of reducing substances in the wort, reducing energy consumption and generally making this technology more economically attractive. The universal heat and mass exchange installation in order to reduce energy and resource consumption in bioethanol production from lignocellulosic biomass is developed at the Institute of Engineering Thermophysics of the NAS of Ukraine. The Installation allows carrying out the processes of dispersion, dissolution, heating, hydrolysis at the same time in one apparatus.


Sign in / Sign up

Export Citation Format

Share Document