Modification of CD4 Immunoadhesin with Monomethoxypoly(Ethylene Glycol) Aldehyde via Reductive Alkylation

1994 ◽  
Vol 5 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Steven M. Chamow ◽  
Timothy P. Kogan ◽  
Michael Venuti ◽  
Thomas Gadek ◽  
Reed J. Harris ◽  
...  
2005 ◽  
Vol 392 (3) ◽  
pp. 555-564 ◽  
Author(s):  
Tao Hu ◽  
Muthuchidambaram Prabhakaran ◽  
Seetharama A. Acharya ◽  
Belur N. Manjula

Our recent studies on PEG–Hb [poly(ethylene glycol)–Hb] conjugates generated by thiolation-mediated maleimide-chemistry based PEGylation demonstrated that the vasoactivity of the PEG–Hb conjugates is a function of the configuration of the PEG chains on the surface of the protein and is independent of the PEG/protein-mass ratio [Manjula, A. G. Tsai, Intaglietta, H.-C. Tsai, Ho, Smith, Perumalsamy, Kanika, Friedman and Acharya (2005) Protein J. 24, 133–146]. A Hb conjugated with six PEG5k chains (SP-PEG5k)6-Hb, was vasoinactive. In an attempt to understand whether the chemistry of conjugation of PEG to Hb has any influence on the modulation of its functional and solution properties, we have now generated a new hexaPEGylated-Hb, (propyl-PEG5k)6-Hb, by reductive alkylation chemistry. CD (circular dichroism) spectral measurements indicated that the overall secondary structure of Hb is not adversely influenced upon PEGylation. (Propyl-PEG5k)6-Hb exhibited an increased O2 affinity with decreased co-operativity and decreased modulation by allosteric effectors comparable with that of (SP-PEG5k)6-Hb, although its Cys-93(β) is not derivatized as in the latter. On a molecular mass basis, PEG linked to Hb by reductive alkylation increased its COP (colloidal osmotic pressure) more efficiently than when linked by thiolation-mediated maleimide-chemistry. These results demonstrate that the functional properties of PEG–Hb conjugates may be a direct consequence of surface decoration of Hb with PEG, but are independent of the site (pattern) and/or the chemistry of PEGylation. However the solution properties of PEGylated Hb are influenced by the site (pattern) and/or the chemistry of PEGylation and the presence or absence of an ‘extension arm’ between the conjugating site of Hb and the PEG chain.


2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Anton Bonartsev ◽  
Vera Voinova ◽  
Elizaveta Akoulina ◽  
Andrey Dudun ◽  
Irina Zharkova ◽  
...  

2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


Author(s):  
Michael A. Henry ◽  
John F. Maddox ◽  
Sushil Bhavnani ◽  
Roy W. Knight ◽  
James Pool

Sign in / Sign up

Export Citation Format

Share Document