Mitochondrial Methionyl-tRNAfMetFormyltransferase fromSaccharomyces cerevisiae:  Gene Disruption and tRNA Substrate Specificity

Biochemistry ◽  
2003 ◽  
Vol 42 (4) ◽  
pp. 932-939 ◽  
Author(s):  
Lionel Vial ◽  
Pilar Gomez ◽  
Michel Panvert ◽  
Emmanuelle Schmitt ◽  
Sylvain Blanquet ◽  
...  
2003 ◽  
Vol 70 ◽  
pp. 39-52 ◽  
Author(s):  
Roy A. Black ◽  
John R. Doedens ◽  
Rajeev Mahimkar ◽  
Richard Johnson ◽  
Lin Guo ◽  
...  

Tumour necrosis factor α (TNFα)-converting enzyme (TACE/ADAM-17, where ADAM stands for a disintegrin and metalloproteinase) releases from the cell surface the extracellular domains of TNF and several other proteins. Previous studies have found that, while purified TACE preferentially cleaves peptides representing the processing sites in TNF and transforming growth factor α, the cellular enzyme nonetheless also sheds proteins with divergent cleavage sites very efficiently. More recent work, identifying the cleavage site in the p75 TNF receptor, quantifying the susceptibility of additional peptides to cleavage by TACE and identifying additional protein substrates, underlines the complexity of TACE-substrate interactions. In addition to substrate specificity, the mechanism underlying the increased rate of shedding caused by agents that activate cells remains poorly understood. Recent work in this area, utilizing a peptide substrate as a probe for cellular TACE activity, indicates that the intrinsic activity of the enzyme is somehow increased.


1978 ◽  
Vol 39 (03) ◽  
pp. 785-786 ◽  
Author(s):  
Y Legrand ◽  
J Caen ◽  
L Robert

1997 ◽  
Vol 78 (01) ◽  
pp. 705-709 ◽  
Author(s):  
Robert D Rosenberg
Keyword(s):  

2017 ◽  
Author(s):  
Kerstin Bathon ◽  
Isabel Weigand ◽  
Jens T Vanselow ◽  
Cristina L Ronchi ◽  
Dalmazi Guido Di ◽  
...  

2020 ◽  
Vol 7 (3) ◽  
pp. 5-19
Author(s):  
Nikhil Nair ◽  
Ronith Chakraborty ◽  
Zubin Mahajan ◽  
Aditya Sharma ◽  
Sidarth Sethi ◽  
...  

Tuberous sclerosis complex (TSC) is a genetic condition caused by a mutation in either the TSC1 or TSC2 gene. Disruption of either of these genes leads to impaired production of hamartin or tuberin proteins, leading to the manifestation of skin lesions, tumors and seizures. TSC can manifests in multiple organ systems with the cutaneous and renal systems being the most commonly affected. These manifestations can secondarily lead to the development of hypertension, chronic kidney disease, and neurocognitive declines. The renal pathologies most commonly seen in TSC are angiomyolipoma, renal cysts and less commonly, oncocytomas. In this review, we highlight the current understanding on the renal manifestations of TSC along with current diagnosis and treatment guidelines.


2020 ◽  
Author(s):  
Carmanah D. Hunter ◽  
Elizabeth Porter ◽  
Christopher Cairo

This work investigated the substrate specificity of hNEU enzymes for a glycoprotein substrate (bovine submaxillary mucin) containing 9-<i>O</i>-acetylated and Neu5Gc residues. Using this model substrate, we observe a general trend for hNEU tolerance of Neu5Ac>Neu5Gc>>>Neu5,9Ac<sub>2</sub>, consistent with our previous results with glycolipid substrates. These results expand our understanding of hNEU enzyme specificity and suggest that naturally occurring modifications of sialic acids can play a role in regulating hNEU activity.


Sign in / Sign up

Export Citation Format

Share Document