Role of the Active Site Cysteine of DpgA, a Bacterial Type III Polyketide Synthase†

Biochemistry ◽  
2004 ◽  
Vol 43 (4) ◽  
pp. 970-980 ◽  
Author(s):  
Claire C. Tseng ◽  
Shaun M. McLoughlin ◽  
Neil L. Kelleher ◽  
Christopher T. Walsh
2002 ◽  
Vol 367 (3) ◽  
pp. 781-789 ◽  
Author(s):  
Nobutaka FUNA ◽  
Yasuo OHNISHI ◽  
Yutaka EBIZUKA ◽  
Sueharu HORINOUCHI

RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium Streptomyces griseus. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys138, His270 and Asn303 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter, whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from Streptomyces antibioticus and Streptomyces lividans.


2004 ◽  
Vol 279 (43) ◽  
pp. 45162-45174 ◽  
Author(s):  
Michael B. Austin ◽  
Miho Izumikawa ◽  
Marianne E. Bowman ◽  
Daniel W. Udwary ◽  
Jean-Luc Ferrer ◽  
...  

2006 ◽  
Vol 2 (9) ◽  
pp. 494-502 ◽  
Author(s):  
Michael B Austin ◽  
Tamao Saito ◽  
Marianne E Bowman ◽  
Stephen Haydock ◽  
Atsushi Kato ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
pp. 753-762
Author(s):  
Delong Kan ◽  
Di Zhao ◽  
Pengfei Duan

AbstractStudies have shown that abundant and various flavonoids accumulate in chili pepper (Capsicum), but there are few reports on the genes that govern chili pepper flavonoid biosynthesis. Here, we report the comprehensive identification of genes encoding type III polyketide synthase (PKS), an important enzyme catalyzing the generation of flavonoid backbones. In total, 13, 14 and 13 type III PKS genes were identified in each genome of C. annuum, C. chinense and C. baccatum, respectively. The phylogeny topology of Capsicum PKSs is similar to those in other plants, as it showed two classes of genes. Within each class, clades can be further identified. Class II genes likely encode chalcone synthase (CHS) as they are placed together with the Arabidopsis CHS gene, which experienced extensive expansions in the genomes of Capsicum. Interestingly, 8 of the 11 Class II genes form three clusters in the genome of C. annuum, which is likely the result of tandem duplication events. Four genes are not expressed in the tissues of C. annuum, three of which are located in the clusters, indicating that a portion of genes was pseudogenized after tandem duplications. Expression of two Class I genes was complementary to each other, and all the genes in Class II were not expressed in roots of C. annuum. Two Class II genes (CA00g90790 and CA05g17060) showed upregulated expression as the chili pepper leaves matured, and two Class II genes (CA05g17060 and CA12g20070) showed downregulated expression with the maturation of fruits, consistent with flavonoid accumulation trends in chili pepper as reported previously. The identified genes, sequences, phylogeny and expression information collected in this article lay the groundwork for future studies on the molecular mechanisms of chili pepper flavonoid metabolism.


Planta ◽  
2009 ◽  
Vol 229 (5) ◽  
pp. 1077-1086 ◽  
Author(s):  
Lan-Qing Ma ◽  
Yan-Wu Guo ◽  
Dong-Yao Gao ◽  
Dong-Ming Ma ◽  
You-Nian Wang ◽  
...  

Biochemistry ◽  
2005 ◽  
Vol 44 (30) ◽  
pp. 10339-10348 ◽  
Author(s):  
Stephen J. Brokx ◽  
Richard A. Rothery ◽  
Guijin Zhang ◽  
Derek P. Ng ◽  
Joel H. Weiner

Planta ◽  
2017 ◽  
Vol 247 (2) ◽  
pp. 527-541 ◽  
Author(s):  
Li Li ◽  
Misbah Aslam ◽  
Fazle Rabbi ◽  
Mark C. Vanderwel ◽  
Neil W. Ashton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document