Effect of Acylation on Flax Protein Functionality

Author(s):  
F. Shahidi ◽  
P. K. J. P. D. Wanasundara
2013 ◽  
Vol 42 (1) ◽  
pp. 11-19 ◽  
Author(s):  
MZ Alam ◽  
L Regioneiri ◽  
MAS Santos

The synthesis of protein according to genetic code of a gene determines the basis of life and a stable proteome is necessary for cell homeostatis. However, errors occur naturally during translation of protein from its mRNA, which varies from 10-3 to 10-4 per codon. These errors are more frequent in recombinant protein overexpressed in heterologous hosts and affect protein functionality. The increasing amount of nonfunctional protein is often related to mistranslation of a gene under stress. In the present study, Saccharomyces cerevisiae as a host organism to overexpress E. coli lacZ gene fusion with GST to quantify misincorporation of amino acid in GST-? galactosidase recombinant protein. The yeast was treated with various stressors such as ethanol, chromium (CrO3), and aminoglycoside antibiotic - geneticin (G418) to induce protein aggregation. The misincorporation of amino acids was studied in soluble protein fractions by mass-spectrometry to determine how much misincorporation occur. We found that under experimental stress conditions the misincorporation of amino acids ranges from 5.6 ×10-3 to 8 × 10-3, which represents 60-80 fold higher than reported level. DOI: http://dx.doi.org/10.3329/bjas.v42i1.15760 Bang. J. Anim. Sci. 2013. 42 (1): 11-19


2010 ◽  
Vol 191 (7) ◽  
pp. 1229-1238 ◽  
Author(s):  
Christine Salaun ◽  
Jennifer Greaves ◽  
Luke H. Chamberlain

S-palmitoylation describes the reversible attachment of fatty acids (predominantly palmitate) onto cysteine residues via a labile thioester bond. This posttranslational modification impacts protein functionality by regulating membrane interactions, intracellular sorting, stability, and membrane micropatterning. Several recent findings have provided a tantalizing insight into the regulation and spatiotemporal dynamics of protein palmitoylation. In mammalian cells, the Golgi has emerged as a possible super-reaction center for the palmitoylation of peripheral membrane proteins, whereas palmitoylation reactions on post-Golgi compartments contribute to the regulation of specific substrates. In addition to palmitoylating and depalmitoylating enzymes, intracellular palmitoylation dynamics may also be controlled through interplay with distinct posttranslational modifications, such as phosphorylation and nitrosylation.


2017 ◽  
Vol 1 (3) ◽  
pp. 51-51
Author(s):  
H. C. Lee ◽  
P. Singh ◽  
M. M. Metheny ◽  
G. Strasburg ◽  
B. P. Marks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document