scholarly journals Ante- and post-mortem factors affect muscle protein functionality from fish

2001 ◽  
Author(s):  
Sitima Jittinandana
Meat Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 339-352 ◽  
Author(s):  
R.D. Warner ◽  
R.G. Kauffman ◽  
M.L. Greaser

2019 ◽  
Vol 57 (1) ◽  
pp. 39-47
Author(s):  
Andrés Álvarez-Armenta ◽  
Ramón Pacheco-Aguilar ◽  
Juan Carlos Ramírez-Suárez ◽  
Susana María Scheuren-Acevedo ◽  
Enrique Márquez-Ríos ◽  
...  

Freezing conditions affect fish muscle protein functionality due to its denaturation/aggregation. However, jumbo squid (Dosidicus gigas) muscle protein functionality remains stable even after freezing, probably due to the presence of low-molecular-mass compounds (LMMC) as cryoprotectants. Thus, water-soluble LMMC (<1 kDa) fraction obtained from jumbo squid muscle was evaluated by Fourier transform infrared spectrometry. From its spectra, total carbohydrates, free monosaccharides, free amino acids and ammonium chloride were determined. Cryoprotectant capacity and protein cryostability conferred by LMMC were investigated by differential scanning calorimetry. Fraction partial characterization showed that the main components are free amino acids (18.84 mg/g), carbohydrates (67.1 µg/mg) such as monosaccharides (51.1 µg/mg of glucose, fucose and arabinose in total) and ammonium chloride (220.4 µg/mg). Arginine, sarcosine and taurine were the main amino acids in the fraction. LMMC, at the mass fraction present in jumbo squid muscle, lowered the water freezing point to –1.2 °C, inhibiting recrystallization at 0.66 °C. Significant myofibrillar protein stabilization by LMMC was observed after a freeze-thaw cycle compared to control (muscle after extraction of LMMC), proving the effectiveness on jumbo squid protein muscle cryo- stability. Osmolytes in LMMC fraction inhibited protein denaturation/aggregation and ice recrystallization, maintaining the muscle structure stable under freezing conditions. LMMC conferred protein cryostability even at the very low mass fraction in the muscle.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 60 ◽  
Author(s):  
Yao Zhu ◽  
Anne Mullen ◽  
Dilip Rai ◽  
Alan Kelly ◽  
David Sheehan ◽  
...  

RNAlater® is regarded as a potential preservation method for proteins, while its effect on bovine muscle proteins has rarely been evaluated. Bovine muscle protein samples (n = 12) collected from three tender (Warner–Bratzler shear force: 30.02–31.74 N) and three tough (Warner–Bratzler shear force: 54.12–66.25 N) Longissimus thoracis et lumborum (LTL) samples, preserved using two different sampling preservation methods (RNAlater® and dry ice), at two post mortem time points (day 0 and day 14), were characterized using one-dimensional electrophoresis. Fourteen bands with molecular weights ranging from 15 to 250 kDa were verified, both in the dry ice and RNAlater® storage groups, at each time point, using image analysis. A shift from high to low molecular weight fragments, between day 0 and day 14, indicated proteolysis of the muscle proteins during post mortem storage. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and database searching resulted in the identification of 10 proteins in four bands. Protein profiles of muscle preserved in RNAlater® were similar to those of muscle frozen on dry ice storage, both at day 0 and day 14. The results demonstrate that RNAlater® could be a simple and efficient way to preserve bovine muscle proteins for bovine muscle proteomic studies.


Meat Science ◽  
2021 ◽  
pp. 108562
Author(s):  
Mateusz Bucław ◽  
Adam Lepczyński ◽  
Agnieszka Herosimczyk ◽  
Małgorzata Ożgo ◽  
Danuta Szczerbińska ◽  
...  

2019 ◽  
Vol 3 (2) ◽  
Author(s):  
Morgan P. Wonderly ◽  
Hong C. Lee ◽  
Siroj Pokharel ◽  
Gale M. Strasburg ◽  
Bradley P. Marks ◽  
...  

ObjectivesProcessed meats have high fat contents that have been linked to adverse effects on human health. The purpose of this study was to generate low-fat meat products using the combination of hot-boning (HB), crust-freeze-air-chilling (CFAC; HB-CFAC), and cold-batter mincing technologies.Materials and MethodsTwelve commercial pigs (4 pigs/replication) were obtained locally and processed in a traditional way. Skinless, boneless, fresh pork ham (IMPS#402G) was harvested and subjected to either hot-boning (HB) at 1-h poste-mortem or chill-boning (CB) at 24 h post-mortem. All pork ham muscles were cut into one-inch wide strips and subjected to crust-freeze-air-chilling (CFAC). The resulting strips were 3-min pre-chopped and 6-min post-chopped for full-fat batters (FF), using 65% ham muscle of CFAC, 15% pork back-fat, 16% ice, 2% salt, and 2% starch. For low-fat batters (LF), the strips were similarly chopped with the same ingredients except 0% pork back-fat and 31% ice. Data in three replications were evaluated by one-way ANOVA, using PASW 18 statistic program and a completely randomized design. A post-hoc analysis was performed using Duncan`s multiple range test to evaluate differences of fat content and protein functionality among treatments at P < 0.05.ResultsAfter chilling, the pH 6.27 of HB-loin muscles at an hour post-mortem was significantly higher than that pH 5.63 of CB-loin muscles at 24 h post-mortem (P < 0.05). Similarly, the pH 6.0 of cooked HB-gels was higher than the pH 5.7 of cooked CB-gels, regardless of fat content (P < 0.05). The 65% moisture and 11– 12% fat in full-fat gels (HB-FF and CB-FF) were lower and higher, respectively, than 76– 78% moisture and 1.6– 3.0% fat in low-fat gels (HB-LF and CB-LF), regardless of boning type. Cooking yield (%) was improved in HB-gels more than CB-gels. In responding to the cooking yield, the lowest and the highest expressible moistures were found in HB-FF gels and CB-LF gels, respectively. Both HB-FF and HB-LF gels showed higher values for hardness, cohesiveness, and gumminess than CB-FF gels, with the least value found in CB-LF gels. These results indicated that the cold-batter mincing of HB-muscles provided higher protein functionality and gel-forming ability than that of CB-muscles so that fat was reduced without textural quality loss (P < 0.05). The next step of this research is to generate fatty/creamy-like texture by chopping low-fat ham muscles at sub-zero temperatures for extended times, resulting in small and uniform protein particle sizes.


Sign in / Sign up

Export Citation Format

Share Document