Novel Rare Earth Germanotungstates and Organic Hybrid Derivatives:  Synthesis and Structures of M/[α-GeW11O39] (M = Nd, Sm, Y, Yb) and Sm/[α-GeW11O39](DMSO)

2006 ◽  
Vol 6 (10) ◽  
pp. 2266-2270 ◽  
Author(s):  
Jing-Ping Wang ◽  
Xian-Ying Duan ◽  
Xiao-Di Du ◽  
Jing-Yang Niu
Keyword(s):  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiuze Hei ◽  
Yang Fang ◽  
Simon J. Teat ◽  
Colin Farrington ◽  
Megan Bonite ◽  
...  

Abstract Two photoluminescent copper(I) iodide inorganic-organic hybrid materials have been synthesized and structurally characterized as 1D-Cu2I2(bpoe)2 (1) and 1D-Cu2I2(bbtpe-m)2 (2) (bpoe = 1,2-bis(pyridin-3-yloxy)ethane, bbtpe-m = 1,1′-(3-methylpentane-1,5-diyl)bis(1H-benzo[1,2,3]triazole). Both are chain-like structures composed of Cu2I2 rhomboid dimers connected by bidentate ligands. Their emission colors range from cyan to yellow with relatively high internal quantum yields in the solid state. The tunable band gap and emission color is achieved by varying the LUMO energies of the ligands. The structures are robust and remain stable up to T = 260 °C, and coupled with their efficient and adjustable luminescence, facile synthesis, and non-toxic nature, these compounds demonstrate potential as rare earth element (REE)-free phosphors.


Author(s):  
Yunping Huang ◽  
Theodore A Cohen ◽  
Parker Sommerville ◽  
Christine Luscombe

Organic hybrid light-emitting diodes (hybrid-LEDs) employ organic dyes as light converters on top of commercial blue inorganic LEDs, replacing incumbent inorganic phosphor light converters synthesized from rare-earth and/or toxic metallic...


2022 ◽  
Vol 26 ◽  
pp. 101304
Author(s):  
Meng Luo ◽  
Konstantin Shaitan ◽  
Xiaoyan Qu ◽  
Anton P Bonartsev ◽  
Bo Lei

2006 ◽  
Vol 31 (6) ◽  
pp. 770-775 ◽  
Author(s):  
Juan Li ◽  
Xihe Yu ◽  
Hongfang Wang ◽  
Kun Xu ◽  
Xinyu Wu ◽  
...  

Author(s):  
N. M. P. Low ◽  
L. E. Brosselard

There has been considerable interest over the past several years in materials capable of converting infrared radiation to visible light by means of sequential excitation in two or more steps. Several rare-earth trifluorides (LaF3, YF3, GdF3, and LuF3) containing a small amount of other trivalent rare-earth ions (Yb3+ and Er3+, or Ho3+, or Tm3+) have been found to exhibit such phenomenon. The methods of preparation of these rare-earth fluorides in the crystalline solid form generally involve a co-precipitation process and a subsequent solid state reaction at elevated temperatures. This investigation was undertaken to examine the morphological features of both the precipitated and the thermally treated fluoride powders by both transmission and scanning electron microscopy.Rare-earth oxides of stoichiometric composition were dissolved in nitric acid and the mixed rare-earth fluoride was then coprecipitated out as fine granules by the addition of excess hydrofluoric acid. The precipitated rare-earth fluorides were washed with water, separated from the aqueous solution, and oven-dried.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
G. M. Micha ◽  
L. Zhang

RENi5 (RE: rare earth) based alloys have been extensively evaluated for use as an electrode material for nickel-metal hydride batteries. A variety of alloys have been developed from the prototype intermetallic compound LaNi5. The use of mischmetal as a source of rare earth combined with transition metal and Al substitutions for Ni has caused the evolution of the alloy from a binary compound to one containing eight or more elements. This study evaluated the microstructural features of a complex commercial RENi5 based alloy using scanning and transmission electron microscopy.The alloy was evaluated in the as-cast condition. Its chemistry in at. pct. determined by bulk techniques was 12.1 La, 3.2 Ce, 1.5 Pr, 4.9 Nd, 50.2 Ni, 10.4 Co, 5.3 Mn and 2.0 Al. The as-cast material was of low strength, very brittle and contained a multitude of internal cracks. TEM foils could only be prepared by first embedding pieces of the alloy in epoxy.


1952 ◽  
Vol 44 (3) ◽  
pp. 442-442
Author(s):  
Frank Spedding ◽  
Harley Wilhelm ◽  
Wayne Keller et al
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document