3C–SiC Heteroepitaxial Growth by Vapor–Liquid–Solid Mechanism on Patterned 4H–SiC Substrate Using Si–Ge Melt

2011 ◽  
Vol 11 (6) ◽  
pp. 2177-2182 ◽  
Author(s):  
J. Lorenzzi ◽  
M. Lazar ◽  
D. Tournier ◽  
N. Jegenyes ◽  
D. Carole ◽  
...  
2007 ◽  
Vol 556-557 ◽  
pp. 187-190 ◽  
Author(s):  
Maher Soueidan ◽  
Olivier Kim-Hak ◽  
Gabriel Ferro ◽  
Patrick Chaudouët ◽  
Didier Chaussende ◽  
...  

We report on the heteroepitaxial growth of 3C-SiC layers by Vapor-Liquid-Solid (VLS) mechanism on various α-SiC substrates, namely on- and off-axis for both 4H and 6H-SiC(0001), Si and C faces. The Si-Ge melts, which Si content was varied from 25 to 50 at%, were fed by 3 sccm of propane. The growth temperature was varied from 1200 to 1600°C. It was found that singledomain 3C-SiC layers can be obtained on 6H-SiC off and on-axis and 4H-SiC on-axis, while the other types of substrate gave twinned 3C-SiC material. As a general rule, one has to increase temperature when decreasing the Si content of the melt in order to avoid DPB formation. It was also found that twinned 3C-SiC layers form at low temperature while homoepitaxy is achieved at high temperature.


2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


2022 ◽  
Author(s):  
Nikolaos Kelaidis ◽  
Matthew Zervos ◽  
Nektarios Lathiotakis ◽  
Alexander Chroneos ◽  
Eugenia Tanasă ◽  
...  

PbO nanowires have been obtained via a self-catalyzed, vapor-liquid-solid mechanism and the reaction of Pb with O2 between 200°C and 300°C at 10 Pa. These had the form of tapes...


Author(s):  
Alla Nastovjak ◽  
David Shterental ◽  
Nataliya Shwartz

The results of the simulation of the GaAs nanowire self-catalyzed growth via vapor-liquid-solid mechanism using various pulse modes are presented in this work.


1998 ◽  
Vol 547 ◽  
Author(s):  
Ying Dai ◽  
Ce-Wen Nan

AbstractAluminum nitride whiskers were synthesized by nitridation of commercial aluminum powder at 1623K in a nitrogen atmosphere. The starting materials consisted of aluminum and carbon black. The carbon acted as a barrier between aluminum powders during nitridation and was removed by heating in air at 923K. The whiskers were about 0.5-1μm in diameter and 10-20μm in length. The droplets at the whisker tips showed that the whiskers grew via a vapor-liquid-solid mechanism. The morphologies of the whiskers were studied by means of SEM and TEM. The formation of the whiskers depended on the processing conditions.


Sign in / Sign up

Export Citation Format

Share Document