Study of Molecular Interactions and Dynamics in Thin Silica Surface Layers by Proton Solid-State NMR Spectroscopy

2004 ◽  
Vol 16 (21) ◽  
pp. 4071-4079 ◽  
Author(s):  
Kay Saalwächter ◽  
Matthias Krause ◽  
Wolfram Gronski
Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5974
Author(s):  
Iryna S. Protsak ◽  
Yevhenii M. Morozov ◽  
Dong Zhang ◽  
Volodymyr M. Gun’ko

The investigation of molecular interactions between a silica surface and organic/inorganic polymers is crucial for deeper understanding of the dominant mechanisms of surface functionalization. In this work, attachment of various depolymerized polydimethylsiloxanes (PDMS) of different chain lengths, affected by dimethyl carbonate (DMC), to silica nanoparticles pretreated at different temperatures has been studied using 29Si, 1H, and 13C solid-state NMR spectroscopy. The results show that grafting of different modifier blends onto a preheated silica surface depends strongly on the specific surface area (SSA) linked to the silica nanoparticle size distributions affecting all textural characteristics. The pretreatment at 400 °C results in a greater degree of the modification of (i) A-150 (SSA = 150 m2/g) by PDMS-10/DMC and PDMS‑1000/DMC blends; (ii) A‑200 by PDMS-10/DMC and PDMS-100/DMC blends; and (iii) A-300 by PDMS-100/DMC and PDMS-1000/DMC blends. The spectral features observed using solid-state NMR spectroscopy suggest that the main surface products of the reactions of various depolymerized PDMS with pretreated nanosilica particles are the (CH3)3SiO-[(CH3)2SiO-]x fragments. The reactions occur with the siloxane bond breakage by DMC and replacing surface hydroxyls. Changes in the chemical shifts and line widths, as shown by solid-state NMR, provide novel information on the whole structure of functionalized nanosilica particles. This study highlights the major role of solid-state NMR spectroscopy for comprehensive characterization of functionalized solid surfaces.


2021 ◽  
Vol 11 (13) ◽  
pp. 5767
Author(s):  
Veronica Ciaramitaro ◽  
Alberto Spinella ◽  
Francesco Armetta ◽  
Roberto Scaffaro ◽  
Emmanuel Fortunato Gulino ◽  
...  

Hydrophobic treatment is one of the most important interventions usually carried out for the conservation of stone artefacts and monuments. The study here reported aims to answer a general question about how two polymers confer different protective performance. Two fluorinated-based polymer formulates applied on samples of Cusa’s stone confer a different level of water repellence and water vapour permeability. The observed protection action is here explained on the basis of chemico-physical interactions. The distribution of the polymer in the pore network was investigated using scanning electron microscopy and X-ray microscopy. The interactions between the stone substrate and the protective agents were investigated by means of solid state NMR spectroscopy. The ss-NMR findings reveal no significant changes in the chemical neighbourhood of the observed nuclei of each protective agent when applied onto the stone surface and provide information on the changes in the organization and dynamics of the studied systems, as well as on the mobility of polymer chains. This allowed us to explain the different macroscopic behaviours provided by each protective agent to the stone substrate.


2021 ◽  
Vol 33 (2) ◽  
pp. 642-656
Author(s):  
Clayton J. Dahlman ◽  
Rhys M. Kennard ◽  
Piotr Paluch ◽  
Naveen R. Venkatesan ◽  
Michael L. Chabinyc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document