Structure–Properties Correlation in Si Nanoparticles by Total Scattering and Computer Simulations

2013 ◽  
Vol 25 (11) ◽  
pp. 2365-2371 ◽  
Author(s):  
Valeri Petkov ◽  
Colin M. Hessel ◽  
Justine Ovtchinnikoff ◽  
Adrien Guillaussier ◽  
Brian A. Korgel ◽  
...  
Nanoscale ◽  
2015 ◽  
Vol 7 (17) ◽  
pp. 8122-8134 ◽  
Author(s):  
Binay Prasai ◽  
Yang Ren ◽  
Shiyao Shan ◽  
Yinguang Zhao ◽  
Hannah Cronk ◽  
...  

Total scattering coupled to 3D modeling resolves 3D atomic structure of metallic NPs providing clues to optimizing their functional properties.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
R. Herrera ◽  
A. Gómez

Computer simulations of electron diffraction patterns and images are an essential step in the process of structure and/or defect elucidation. So far most programs are designed to deal specifically with crystals, requiring frequently the space group as imput parameter. In such programs the deviations from perfect periodicity are dealt with by means of “periodic continuation”.However, for many applications involving amorphous materials, quasiperiodic materials or simply crystals with defects (including finite shape effects) it is convenient to have an algorithm capable of handling non-periodicity. Our program “HeGo” is an implementation of the well known multislice equations in which no periodicity assumption is made whatsoever. The salient features of our implementation are: 1) We made Gaussian fits to the atomic scattering factors for electrons covering the whole periodic table and the ranges [0-2]Å−1 and [2-6]Å−1.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


Author(s):  
Vladimir Yu. Kolosov ◽  
Anders R. Thölén

In this paper we give a short overview of two TEM applications utilizing the extinction bend contour technique (BC) giving the advantages and disadvantages; especially we consider two areas in which the BC technique remains unique. Special attention is given to an approach including computer simulations of TEM micrographs.BC patterns are often observed in TEM studies but are rarely exploited in a serious way. However, this type of diffraction contrast was one of the first to be used for analysis of imperfections in crystalline foils, but since then only some groups have utilized the BC technique. The most extensive studies were performed by Steeds, Eades and colleagues. They were the first to demonstrate the unique possibilities of the BC method and named it real space crystallography, which developed later into the somewhat similar but more powerful convergent beam method. Maybe, due to the difficulties in analysis, BCs have seldom been used in TEM, and then mainly to visualize different imperfections and transformations.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Viktor N. Serezhkin ◽  
Anton V. Savchenkov

The universal approach for studying structure/properties relationships shows that every polymorph of galunisertib is characterized with unique noncovalent interactions.


Author(s):  
Natalie J. Allen ◽  
David Stanley ◽  
Helen Williams ◽  
Sarah J. Irwin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document