Solid-State Polymerization Reaction by Combined In-Situ X-ray Diffraction and X-ray Absorption Spectroscopy (XRD−EXAFS)

1997 ◽  
Vol 9 (12) ◽  
pp. 3127-3131 ◽  
Author(s):  
Matthias Epple ◽  
Gopinathan Sankar ◽  
John Meurig Thomas
2020 ◽  
Vol 22 (20) ◽  
pp. 11713-11723 ◽  
Author(s):  
Abhijeet Gaur ◽  
Matthias Stehle ◽  
Kristian Viegaard Raun ◽  
Joachim Thrane ◽  
Anker Degn Jensen ◽  
...  

Combination of in situ multi-edge X-ray absorption spectroscopy at the Mo K- and Fe K-edges in combination with X-ray diffraction successfully uncovered structural dynamics and phase transformations of an iron molybdate catalyst during redox cycling.


2012 ◽  
Vol 2012 (5) ◽  
pp. 783-789 ◽  
Author(s):  
Ying Zhou ◽  
Elena Antonova ◽  
Yuanhua Lin ◽  
Jan-Dierk Grunwaldt ◽  
Wolfgang Bensch ◽  
...  

1990 ◽  
Vol 210 ◽  
Author(s):  
C. Lévy-Clèment ◽  
C. Mondoloni ◽  
C. Godart ◽  
R. Cortès

AbstractThis paper presents applications of in situ X-ray diffraction and absorption techniques to the study of H+/MnO2 alkaline batteries. The two complementary in situ techniques are described. Investigation of the electrochemical insertion and deinsertion of H+ has been made through its influence on the evolution of the crystallographic structure of γ-MnO2, while investigation of the transfer of e has been undertaken through the variation of the oxidation state of the manganese during the discharging and charging process of a battery. New insights in the understanding of the mechanisms of proton insertion and charge transfer into γ-MnO2 are discussed.


2015 ◽  
Vol 119 (14) ◽  
pp. 7765-7770 ◽  
Author(s):  
C. Maurizio ◽  
R. Checchetto ◽  
A. Trapananti ◽  
A. Rizzo ◽  
F. D’Acapito ◽  
...  

2010 ◽  
Vol 12 (3) ◽  
pp. 559-562 ◽  
Author(s):  
Kerry Simmance ◽  
Gopinathan Sankar ◽  
Robert G. Bell ◽  
Carmelo Prestipino ◽  
Wouter van Beek

2020 ◽  
Author(s):  
Paulo F M de Oliveira ◽  
Adam Michalchuk ◽  
Ana de Oliveira Guilherme Buzanich ◽  
Ralf Bienert ◽  
Roberto M. Torresi ◽  
...  

<div>The development of time-resolved in situ approaches for monitoring mechanochemical</div><div>transformations has revolutionized the field of mechanochemistry. Currently, the established in</div><div>situ approaches greatly limit the scope of investigations that are possible. Here we develop a new</div><div>approach to simultaneously follow the evolution of bulk atomic and electronic structure during a</div><div>mechanochemical synthesis. This is achieved by coupling two complementary synchrotron-based</div><div>X-ray methods: X-ray absorption spectroscopy and X-ray diffraction. We apply this method to</div><div>investigate the bottom-up mechanosynthesis of technologically important Au nanoparticles in the</div><div>presence of three different reducing agents. Moreover, we demonstrate how X-ray absorption</div><div>spectroscopy offers unprecedented insight into the early stage generation of growth species (e.g.</div><div>monomers and clusters), which lead to the subsequent formation of nanoparticles. These</div><div>processes are beyond the detection capabilities of diffraction methods. The approach is general,</div><div>and not limited to monitoring NP mechanosynthesis. This combined X-ray approach paves the</div><div>way to new directions in mechanochemical research of advanced electronic materials.</div>


2013 ◽  
Vol 135 (21) ◽  
pp. 8047-8056 ◽  
Author(s):  
Yanjie Cui ◽  
Ali Abouimrane ◽  
Jun Lu ◽  
Trudy Bolin ◽  
Yang Ren ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document