A Biochemical GC-MS Application for the Organic Chemistry Laboratory: Determination of Fatty Acid Composition of Arabidopsis thaliana Lipids

2000 ◽  
Vol 77 (11) ◽  
pp. 1466 ◽  
Author(s):  
Jared D. Bender ◽  
Arthur J. Catino ◽  
Kenneth R. Hess ◽  
Michael E. Lassman ◽  
Phyllis A. Leber ◽  
...  
2021 ◽  
Vol 34 (1) ◽  
pp. 34-41
Author(s):  
Viktoriia O. Pinkevych ◽  
Moeen F. Dababneh ◽  
Nadiia Ye. Burda ◽  
Iryna O. Zhuravel

Abstract Introduction. With due consideration of the properties of fatty acids, as well as their importance for normal life activity and human development, research into the fatty acid composition of poorly studied plants and the search for new domestic plant sources of polyunsaturated fatty acids is a mainstream trend in modern pharmacy. Aim. Aim of research – determination of fatty acid qualitative composition and content in threshed grass, stalks, roots and seeds of Night-scented stock ‘Queen of Night’ and ‘Evening Scent’ cultivars as grown in Ukraine. Methods. Gas chromatography. Results. Both cultivars of Night-scented stock taken for analysis had similar fatty acid composition – 5 saturated, 5 (4 for seeds) monounsaturated and 2 polyunsaturated fatty acids, Quantitatively, in all tested parts of the herb polyunsaturated and monounsaturated fatty acid dominated, making in total 88.92% and 88.62% in the seeds of Queen of Night and Evening Scent cultivars, respectively, and averaging 65% in other parts of the tested cultivars. Linolenic and linoleic acids prevailed among the polyunsaturated fatty acids, whereas oleic acid prevailed among the monounsaturated. Conclusion. Night-scented stock can be utilized as a source of polyunsaturated fatty acids for the development of drugs and for standardization of tested raw materials.


Author(s):  
Zhuowei Li ◽  
Shijie Ma ◽  
Huan Song ◽  
Zheng Yang ◽  
Cuizhu Zhao ◽  
...  

Abstract Nervonic acid (24:1) is a major component in nerve and brain tissues and it has important applications in food and pharmaceutical industries. Malania oleifera seeds contain about 40% nervonic acid. However, the mechanism of nervonic acid biosynthesis and accumulation in seeds of this endangered tree species remains unknown. In this study, developmental changes in fatty acid composition within embryos and their pericarps were investigated. Nervonic acid proportions steadily increased in developing embryos but 24:1 was not detected in pericarps at any stage. Two 3-ketoacyl-CoA synthase (KCS) homologs have been isolated from M. oleifera developing seeds by homologous cloning methods. Both KCSs are expressed in developing embryos but not detected in pericarps. Based on a phylogenetic analysis, these two KCSs were named as MoKCS4 and MoKCS11. Seed-specific expression of the MoKCS11 in Arabidopsis thaliana led to about 5% nervonic acid accumulation, while expression of the MoKCS4 did not show an obvious change in fatty acid composition. It is noteworthy that the transformation of the same MoKCS11 construct into two Brassica napus cultivars with high erucic acid did not produce the expected accumulation of nervonic acid, although expression of MoKCS11 was detected in the developing embryos of transgenic lines. In contrast, overexpression of MoKCS11 results in similar level of nervonic acid accumulation in camelina, a species which contains a similar level of 11Z-eicosenoic acid as does Arabidopsis thaliana. Taken together, the MoKCS11 may have a substrate preference for 11Z-eicosenoic acid, but not for erucic acid, in planta.


Meat Science ◽  
2005 ◽  
Vol 69 (2) ◽  
pp. 243-248 ◽  
Author(s):  
I. González-Martı́n ◽  
C. González-Pérez ◽  
N. Alvarez-Garcı́a ◽  
J.M. González-Cabrera

1966 ◽  
Vol 43 (1) ◽  
pp. 2-6 ◽  
Author(s):  
Cyril Y. Bowers ◽  
James G. Hamilton ◽  
James E. Muldrey ◽  
Walter T. Miyamasu ◽  
George Ann Reynolds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document