A 3-ketoacyl-CoA synthase 11 (KCS11) homolog from Malania oleifera synthesizes nervonic acid in plants rich in 11Z-eicosenoic acid

Author(s):  
Zhuowei Li ◽  
Shijie Ma ◽  
Huan Song ◽  
Zheng Yang ◽  
Cuizhu Zhao ◽  
...  

Abstract Nervonic acid (24:1) is a major component in nerve and brain tissues and it has important applications in food and pharmaceutical industries. Malania oleifera seeds contain about 40% nervonic acid. However, the mechanism of nervonic acid biosynthesis and accumulation in seeds of this endangered tree species remains unknown. In this study, developmental changes in fatty acid composition within embryos and their pericarps were investigated. Nervonic acid proportions steadily increased in developing embryos but 24:1 was not detected in pericarps at any stage. Two 3-ketoacyl-CoA synthase (KCS) homologs have been isolated from M. oleifera developing seeds by homologous cloning methods. Both KCSs are expressed in developing embryos but not detected in pericarps. Based on a phylogenetic analysis, these two KCSs were named as MoKCS4 and MoKCS11. Seed-specific expression of the MoKCS11 in Arabidopsis thaliana led to about 5% nervonic acid accumulation, while expression of the MoKCS4 did not show an obvious change in fatty acid composition. It is noteworthy that the transformation of the same MoKCS11 construct into two Brassica napus cultivars with high erucic acid did not produce the expected accumulation of nervonic acid, although expression of MoKCS11 was detected in the developing embryos of transgenic lines. In contrast, overexpression of MoKCS11 results in similar level of nervonic acid accumulation in camelina, a species which contains a similar level of 11Z-eicosenoic acid as does Arabidopsis thaliana. Taken together, the MoKCS11 may have a substrate preference for 11Z-eicosenoic acid, but not for erucic acid, in planta.

1951 ◽  
Vol 29 (10) ◽  
pp. 871-876 ◽  
Author(s):  
C. G. Youngs ◽  
T. M. Mallard ◽  
B. M. Craig ◽  
H. R. Sallans

The fatty acid composition of the oil from Argentine rapeseed grown in Western Canada was investigated by converting the glyceride esters to methyl esters and distilling the latter in a Podbielniak Heligrid distillation column. Analyses of the fractions showed 6 to 10% more eicosenoic acid and 7 to 10% less erucic acid than was previously reported for rapeseed oils.


2017 ◽  
Vol 4 (04) ◽  
Author(s):  
SUNITA SINGH ◽  
R. P. SINGH ◽  
H. K. SINGH ◽  
N. A. KHAN ◽  
M. K. MAURYA

Among the oilseed Brassica crops, Indian mustard [Brassica juncea (L.) Czern and Coss.] is an important source of oil from a nutritional point of view. The nutritional value of oil and cake quality is governed mainly by the composition of its fatty acids, iodine value, saponification, acid value, glucosinolates, crude fibre, protein and limiting amino acids, etc. Seventeen varieties/strains of Indian mustard were taken for saturated and unsaturated fatty acid analysis. The eicosenoic was absent in genotype (NUDBYJ-10) and erucic acid (NUDBYJ-10, LES-46 and Pusa mustard- 21). The fatty acid composition found a variable in different genotypes. Saturated fatty acid, Palmitic + Stearic ranged between 2.3 to 6.5%, Oleic 10.6 to 40.7%, Linoleic 16.1 to 37.7%, Linolenic 13.3 to 26.7%, Eicosenoic 0.00 to 10.30% and Erucic acid 0.00 to 47.50%, respectively. Alternaria blight severity also varied in different genotypes and ranged between 18.75 to 56.25%, maximum being in genotype Kranti and minimum in LES-47. No significant correlation was observed between the fatty acid composition and disease severity. The oil content range from 38.1 to 42.60% and protein content was found highest in variety RGN-73. The amino acid viz. methionine and tryptophan range between 0.41 to 1.81 g/16gN and 0.41 to 1.81 g /16g N, respectively.


1970 ◽  
Vol 50 (3) ◽  
pp. 233-247 ◽  
Author(s):  
D. B. FOWLER ◽  
R. K. DOWNEY

Self-pollinated seed from normal and erucic acid free plants of summer rapeseed (Brassica napus L.) was harvested at weekly intervals from pollination to maturity. Oven-dried whole seeds and their component parts were weighed and analyzed for oil content and fatty acid composition. Oil and dry matter accumulation followed sigmoidal patterns, most of the deposition occurring between 14 and 35 days after pollination (DAP). The relative contribution of the testa, endosperm and embryo to dry weight and oil content of whole seeds changed significantly during seed development. Oil content of the developing embryo varied from 22 to 44%, and the testa from 1.6 to 13%, although at maturity only 6 to 8% oil was found in the testa and adhering aleurone. The nucleate endosperm oil content was estimated to be low and in the order of 2 to 2.5%. In 7- to 14-day-old seeds the dry weight, oil content and fatty acid composition were largely determined by the testa and endosperm. From 14 to 21 DAP the testa and embryo were dominant and after 21 DAP the embryo was the controlling influence on the seed characteristics studied.Oils of the testa, nucleate endosperm and embryo differed in fatty acid composition. In seeds free of erucic acid, the ratios of the 18 carbon fatty acids of the embryo and testa remained nearly constant from 21 DAP to maturity. This suggested that the variation in fatty acid composition as well as oil content during seed development in this material was due to disproportionate changes in the contribution of the testa, nucleate endosperm and embryo. However, in developing seeds capable of producing erucic acid a change in the ratio of fatty acid synthesis occurred in both the testa and embryo.


Author(s):  
Md. Delwar Hossain ◽  
Kamal Uddin Ahmed ◽  
Mst. Farhana Nazneen Chowdhury ◽  
Alak Barman ◽  
Arif Ahmed ◽  
...  

With a view to studying the qualitative features and the variations in fatty acid composition of 6 rapeseed (B. campestris and B. napus) and mustard (B. juncea) varieties, an experiment was conducted. Among these varieties, BARI Sarisha-14 presented the value of 168.4 which was recorded the highest. Both BARI Sarisha-11 and BARI Sarisha-14 was found with the highest iodine value of 39.44; and the highest amount of acid value was recorded from BARI Sarisha-11 (1.867). Gas-liquid chromatographic (GLC) method has been used to determine the composition of essential fatty acid in the seeds of Brassica spp. (L.). From the GLC analysis, it was found that erucic acid, oleic acid, linoleic acid and lenolenic acid were the prime fatty acids in all the varieties. Erucic acid was in the range of 41.11 – 51.28%, oleic acid was the highest both in BARI Sarisha-11 and BARI Sarisha- 13 contained (18.69%), while BARI Sarisha-9 contained the highest amount of the unsaturated linoleic (17.75%)  and linolenic (15.83%) acids. Moreover, palmitic acid, stearic acid and archidic acid were also present in small amount.


1959 ◽  
Vol 39 (4) ◽  
pp. 437-442 ◽  
Author(s):  
B. M. Craig ◽  
L. R. Wetter

The content of C16, C18, C20, C22 fatty acids were measured by gas liquid phase chromatography and linoleic and linolenic acids by spectral analyses on the oil from seven varieties of rapeseed grown at seven stations in Western Canada. Significant differences were found between varieties for all oil properties except the content of C16 acids. The major variation occurred in C18, C22 and linoleic acids with lesser amounts in the C20 and linolenic acids. The varieties Golden, Argentine, Regina II and Swedish are classed as high, Gute and Arlo as intermediate, and Polish as low erucic acid oils.


Sign in / Sign up

Export Citation Format

Share Document