Preliminary Investigation of the Supply of Chemical Species to an Aqueous Solution Using a Hydrogen−Oxygen Flame

2005 ◽  
Vol 39 (15) ◽  
pp. 5851-5855
Author(s):  
Miho Uchida ◽  
Takahiro Sogabe ◽  
Tadaaki Ikoma ◽  
Akitsugu Okuwaki
1984 ◽  
Vol 13 (10) ◽  
pp. 1629-1632 ◽  
Author(s):  
Michiaki Takasaki ◽  
Shinya Nomoto ◽  
Kaoru Harada

2014 ◽  
Vol 1665 ◽  
pp. 139-148 ◽  
Author(s):  
Ryota Takahashi ◽  
Michitaka Sasoh ◽  
Yu Yamashita ◽  
Hiromi Tanabe ◽  
Tomofumi Sakuragi

ABSTRACTIn order to analyze the C-14 inventory and leaching rate for safety evaluation of transuranic waste disposal, it is necessary to establish an analytical method that can measure C-14 with sufficient precision [1]. Oxidative decomposition of organic compounds containing C-14 is carried out to absorb carbon dioxide (CO2) in an alkaline solution, which is mixed with a liquid scintillation cocktail, and the amount C-14 is quantified by measuring a beta ray spectrum with a liquid scintillation counter. It has been difficult to completely decompose carbon compounds in a sample, even to CO2, by using conventional oxidizing agents. In the work described here, we improved the method of oxidative decomposition used to completely decompose carbon compounds using peroxydisulfuric acid (K2S2O8). When C-14 in the form of CO2 was absorbed in a sodium hydroxide (NaOH) aqueous solution, only 80% of the actually used quantity was detected. Total organic carbon measurements showed that the entire quantity of CO2 was absorbed by NaOH. When NaOH aqueous solution was used, it was found that only the analytical value was 80%. The entire quantity of the actually used carbon could be measured by absorbing the CO2 in Carbo-Sorb®. An anion form and a neutral molecule exist in the organic compound released from activated metals. In order to identify organic compounds efficiently, fractionation into an anion and a neutral molecule and separation by high performance liquid chromatography (HPLC) are necessary. Here, we propose the combined use of an ion exchange resin and HPLC as an improved technique for identification of the chemical species.


2013 ◽  
Vol 67 (7) ◽  
pp. 1605-1611 ◽  
Author(s):  
Qian Zhao ◽  
Li Feng ◽  
Xiang Cheng ◽  
Chao Chen ◽  
Liqiu Zhang

This paper investigated the effects of selected common chemical species in natural waters (HCO3−, NO3− and humic acids (HA)) on the photodegradation of amoxicillin (AMO) under simulated irradiation using a 300 W xenon lamp. Quenching experiments were carried out to explore the mechanisms of AMO photodegradation. The results indicated that AMO photodegradation followed pseudo-first-order kinetics. Increasing AMO concentration from 100 to 1,000 μg L−1 led to the decrease in the photodegradation rate constant from 0.2411 to 0.1912 min−1. The presence of NO3− and HA obviously inhibited the photodegradation rate of AMO because they can compete for photons with AMO. Bicarbonate, as a hydroxyl radical (·OH) scavenger, also adversely affected AMO photodegradation. Quenching experiments in pure water suggested that AMO could undergo self-sensitized photooxidation via ·OH and singlet oxygen (1O2), accounting for AMO removal of 34.86 and 8.26%, respectively. In HA solutions, the indirect photodegradation of AMO was mostly attributed to the produced ·OH (22.37%), 1O2 (24.12%) and 3HA* (20.80%), whereas the contribution of direct photodegradation was to some extent decreased.


2021 ◽  
Author(s):  
Hua-Qing Yin ◽  
Kui Tan ◽  
Stephanie Jensen ◽  
Simon J. Teat ◽  
Saif Ullah ◽  
...  

A robust In-MOF, In(tcpp), demonstrates sensitive detection of the fluorinated chemical species F− and PFOA via distinctly different luminescence signal change, and effective adsorption and removal of both species from aqueous solution.


1975 ◽  
Vol 32 (12) ◽  
pp. 2379-2383 ◽  
Author(s):  
Kenneth Emerson ◽  
Rosemarie C. Russo ◽  
Richard E. Lund ◽  
Robert V. Thurston

The toxicity of ammonia to fishes has been attributed to the un-ionized ammonia chemical species present in aqueous solution. Because the percent of total ammonia present as un-ionized ammonia (NH3) is so dependent upon pH and temperature, an exact understanding of the aqueous ammonia equilibrium is important for toxicity studies. A critical evaluation of the literature data on the ammonia–water equilibrium system has been carried out. Results of calculations of values of pKa at different temperatures and of percent of NH3 in aqueous ammonia solutions of zero salinity as a function of pH and temperature are presented.


2016 ◽  
Vol 7 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Vhahangwele Masindi ◽  
Mugera W. Gitari

The present study aimed to evaluate the efficiency of using cryptocrystalline magnesite to remove boron ions from aqueous systems. Batch experimental protocols were used to evaluate the adsorption capacity of magnesite for boron. Parameters optimized included: time, dosage, chemical species concentration and pH. Optimum conditions were observed to be 30 min of agitation, 1 g dosage of magnesite per 100 mL of aqueous solution and 20 mg/L initial boron concentration. Removal of boron from aqueous solution was observed to be independent of initial pH of the aqueous solution. The adsorption of boron onto magnesite was observed to fit better to pseudo-second-order kinetics than pseudo-first-order kinetics hence proving chemisorption. The intra-particle diffusion model revealed that the adsorption of boron from aqueous system occurs through multiple reaction phenomena. Adsorption isotherms proved that the removal of boron by magnesite fitted well to both Langmuir and Freundlich adsorption isotherms hence proving that both mono- and multi-site adsorption processes are taking place. Under optimized conditions, magnesite was able to attenuate the boron concentration to <0.01 mg/L which is below levels stipulated in World Health Organization guidelines. It was concluded that this comparative study will be helpful for further application of magnesite in remediation of boron-contaminated aqueous systems.


Sign in / Sign up

Export Citation Format

Share Document