Improvement of Inventory and Leaching Rate Measurements of C-14 in Hull Waste, and Separation of Organic Compounds for Chemical Species Identification

2014 ◽  
Vol 1665 ◽  
pp. 139-148 ◽  
Author(s):  
Ryota Takahashi ◽  
Michitaka Sasoh ◽  
Yu Yamashita ◽  
Hiromi Tanabe ◽  
Tomofumi Sakuragi

ABSTRACTIn order to analyze the C-14 inventory and leaching rate for safety evaluation of transuranic waste disposal, it is necessary to establish an analytical method that can measure C-14 with sufficient precision [1]. Oxidative decomposition of organic compounds containing C-14 is carried out to absorb carbon dioxide (CO2) in an alkaline solution, which is mixed with a liquid scintillation cocktail, and the amount C-14 is quantified by measuring a beta ray spectrum with a liquid scintillation counter. It has been difficult to completely decompose carbon compounds in a sample, even to CO2, by using conventional oxidizing agents. In the work described here, we improved the method of oxidative decomposition used to completely decompose carbon compounds using peroxydisulfuric acid (K2S2O8). When C-14 in the form of CO2 was absorbed in a sodium hydroxide (NaOH) aqueous solution, only 80% of the actually used quantity was detected. Total organic carbon measurements showed that the entire quantity of CO2 was absorbed by NaOH. When NaOH aqueous solution was used, it was found that only the analytical value was 80%. The entire quantity of the actually used carbon could be measured by absorbing the CO2 in Carbo-Sorb®. An anion form and a neutral molecule exist in the organic compound released from activated metals. In order to identify organic compounds efficiently, fractionation into an anion and a neutral molecule and separation by high performance liquid chromatography (HPLC) are necessary. Here, we propose the combined use of an ion exchange resin and HPLC as an improved technique for identification of the chemical species.

2020 ◽  
Vol 16 ◽  
Author(s):  
Kirubanandam Grace Pavithra ◽  
Vasudevan Jaikumar ◽  
Ponnusamy Senthil Kumar ◽  
PanneerSelvam SundarRajan

Background: Many antibiotics were widely used as medication based on their distinctive features. Among them, sulphonamides were commonly used, however their recalcitrant nature makes them difficult to dispose. Hence, their interaction with environment and analytic technique requires considerable attention globally. Objective: Therefore, this review aimed to provide detailed discussion about environmental as well as human health behaviour and analytic techniques corresponding to sulphonamides. Methods: Various results and discussion were extracted from technical journals and books published by different researchers from all over the world. The cited bibliographic references were intentionally investigated in order to extract relevant information related to proposed work. Results: In this review, the determination techniques such as UV-spectroscopy, Enthalpimetry, Immunosensor, Chromatography, Chemiluminescence, Photoinduced fluorometric determination, Capillary electrophoresis for sulphonamide determination were discussed in detail. Among them, High performance liquid chromatography (HPLC) and UV-spectroscopy was effective and extensively used for screening sulphonamide. Conclusion: Knowing the quantification and behaviour of sulphonamide in aqueous solution is mandatory to opt the suitable wastewater treatment required. Hence, choosing appropriate high precision and feasible screening techniques is necessary, which can be attained with this review.


2005 ◽  
Vol 39 (15) ◽  
pp. 5851-5855
Author(s):  
Miho Uchida ◽  
Takahiro Sogabe ◽  
Tadaaki Ikoma ◽  
Akitsugu Okuwaki

Author(s):  
Xiaofei Luo ◽  
Shuai Hu ◽  
Jingyou Yuan ◽  
Huan Yang ◽  
Shaoyun Shan ◽  
...  

The increasingly severe issues of antibiotic-induced pollution greatly stimulate the development of high-performance advanced adsorbents. In this contribution, a novel Fe-centered metal-organic aerogel (Fe-MOA) was synthesized through the use of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1081
Author(s):  
Shin-Yi Min ◽  
Won-Ju Cho

In this study, we implemented a high-performance two-terminal memristor device with a metal/insulator/metal (MIM) structure using a solution-derived In-Ga-Zn-Oxide (IGZO)-based nanocomposite as a resistive switching (RS) layer. In order to secure stable memristive switching characteristics, IGZO:N nanocomposites were synthesized through the microwave-assisted nitridation of solution-derived IGZO thin films, and the resulting improvement in synaptic characteristics was systematically evaluated. The microwave-assisted nitridation of solution-derived IGZO films was clearly demonstrated by chemical etching, optical absorption coefficient analysis, and X-ray photoelectron spectroscopy. Two types of memristor devices were prepared using an IGZO or an IGZO:N nanocomposite film as an RS layer. As a result, the IGZO:N memristors showed excellent endurance and resistance distribution in the 103 repeated cycling tests, while the IGZO memristors showed poor characteristics. Furthermore, in terms of electrical synaptic operation, the IGZO:N memristors possessed a highly stable nonvolatile multi-level resistance controllability and yielded better electric pulse-induced conductance modulation in 5 × 102 stimulation pulses. These findings demonstrate that the microwave annealing process is an effective synthesis strategy for the incorporation of chemical species into the nanocomposite framework, and that the microwave-assisted nitridation improves the memristive switching characteristics in the oxide-based RS layer.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10300-10308
Author(s):  
Hui Feng ◽  
Siqi Feng ◽  
Niu Tang ◽  
Songbai Zhang ◽  
Xiangyang Zhang ◽  
...  

New idea for the low cost synthesis of high performance photocatalysts for the photodegradation of organic pollutants in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document