Dissolution of α-Iron (Hydr)oxides by Trihydroxamate and Catecholate Siderophores and Oxalate Ligands at High Salt Concentrations and pH 3-6

1967 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
J. Cervini-Silva ◽  
G. Sposito
Keyword(s):  
1979 ◽  
Author(s):  
H. P. Muller ◽  
N. H. van Tilburg ◽  
R. M. Bertina ◽  
J. J. Veltkamp

FVIII was separated into low molecular weight FVIII (LMW FVIII) and high molecular weight FVIII (HMW FVIII) by gel chromatography in the presence of high salt concentration or by high salt elution of LMW FVIII from FVIII bound to anti HMW FVII-Sepharose. Specific antibodies were raised in rabbits against HMW FVIII and LMW FVIII. After removal of the contaminating anti HMW activities the rabbit anti LMW FVIII was still able to neutralize the FVIII coagulant activity of normal plasma and of IMW FVIII with canparable efficiency and it had no effect on the VIIIR:WF of FVIII in normal plasma or in HMW FVIII. Anti LMW FVIII does not bind to HMW FVIII and does not precipitate FVIII as tested by counter immunoelectrophoresis. Rabbit anti HMW FVIII precipitates FVIII in normal plasma, inhibits VIIIR:WF activity, while it has no effect on the FVIII coagulant activity of LMW FVIII. The coagulant activity of FVIII in normal plasma is slightly inhibited by anti HMW FVIII presumably by non-specific effects (sterical hindrance). It is concluded that inhibitory antibodies against VIII:C raised in rabbits recognize antigenic structures only present on LMW FVIII. Antibodies against HMW FVIII raised in rabbits appears to recognize structures only present on HMW FVIII.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 463-P
Author(s):  
TOMONORI KIMURA ◽  
YOSHITAKA HASHIMOTO ◽  
TAKAFUMI SENMARU ◽  
EMI USHIGOME ◽  
MASAHIDE HAMAGUCHI ◽  
...  
Keyword(s):  

2019 ◽  
Vol 23 (6) ◽  
pp. 92-99
Author(s):  
I. G. Kayukov ◽  
O. N. Beresneva ◽  
M. M. Parastaeva ◽  
G. T. Ivanova ◽  
A. N. Kulikov ◽  
...  

BACKGROUND. Increased salt intake is associated with a number of cardiovascular events, including increased blood pressure (BP) and the development of left ventricular hypertrophy (LVH). However, there is much evidence that a high content of sodium chloride in the diet does not always lead to an increase in BP, but almost inevitably causes cardiac remodeling, in particular, LVH. Many aspects of myocardial remodeling induced by high sodium content in the food have not been studied enough. THE AIM of the study was to trace the echocardiographic changes in Wistar rats fed the high salt ration and the high salt ration supplemented with soy proteins.MATERIAL AND METHODS. Echocardiography and BP measurements were performed on male Wistar rats, divided into three groups. The first (control; n = 8) included rats that received standard laboratory feed (20.16 % animal protein and 0.34 % NaCl); the second (n = 10) – animals that received standard feed and 8 % NaCl (high salt ration). The third group (n = 10) consisted of rats who consumed a low-protein diet containing 10 % soy protein isolate (SUPRO 760) and 8 % NaCl. The follow-up period was 2 and 4 months.THE RESULTS of the study showed that: (1) the intake of a large amount of salt with a diet does not necessarily lead to the formation of arterial hypertension; (2) despite the absence of a distinct increase in BP, under these conditions signs of cardiac remodeling, in particular, LVH, appear rather quickly; (3) supplementing a high-salt diet with soy isolates counteracts the development of LVH.CONCLUSION. High salt intake with food can cause heart remodeling, regardless of blood pressure, while soy proteins can counteract this process.


2018 ◽  
Author(s):  
M. Wang ◽  
Q. Xiao ◽  
Y. Gou ◽  
F. Deng ◽  
B. Wang ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 820
Author(s):  
Clara Azzam ◽  
Sudad Al-Taweel ◽  
Ranya Abdel-Aziz ◽  
Karim Rabea ◽  
Alaa Abou-Sreea ◽  
...  

Stevia rebaudiana Bertoni is a little bush, which is cultivated on a large scale in many countries for medicinal purposes and used as a natural sweetener in food products. The present work aims to conduct a protocol for stevia propagation in vitro to produce and introduce Stevia rebaudiana plants as a new sweetener crop to Egyptian agriculture. To efficiently maximize its propagation, it is important to study the influence of stress factors on the growth and development of Stevia rebaudiana grown in vitro. Two stevia varieties were investigated (Sugar High A3 and Spanti) against salt stress. Leaves were used as the source of explants for callus initiation, regeneration, multiplication and rooting. Some stress-related traits, i.e., photosynthetic pigments, proline contents, and enzyme activity for peroxidase (POD), polyphenol oxidase (PPO), and malate dehydrogenase (MDH) were studied. Murashig and Skoog (MS) medium was supplemented with four NaCl concentrations: 500, 1000, 2000, and 3000 mgL−1, while a salt-free medium was used as the control. The data revealed that salinity negatively affected all studied characters: the number of surviving calli, regeneration%, shoot length, the number of multiple shoots, number of leaf plantlets−1, number of root plantlets−1, and root length. The data also revealed that Sugar High A3 is more tolerant than Spanti. The total chlorophyll content decreased gradually with increasing NaCl concentration. However, the opposite was true for proline content. Isozyme’s fractionation exhibited high levels of variability among the two varieties. Various biochemical parameters associated with salt tolerance were detected in POD. Namely, POD4, POD6, POD 9 at an Rf of 0.34, 0.57, and 0.91 in the Sugar High A3 variety under high salt concentration conditions, as well as POD 10 at an Rf of 0.98 in both varieties under high salt concentrations. In addition, the overexpression of POD 5 and POD 10 at Rf 0.52 and 0.83 was found in both varieties at high NaCl concentrations. Biochemical parameters associated with salt tolerance were detected in PPO (PPO1, PPO2 and PPO4 at an Rf of 0.38, 0.42 and 0.62 in the Sugar High A3 variety under high salt concentrations) and MDH (MDH 3 at an Rf of 0.40 in both varieties at high salt concentrations). Therefore, these could be considered as important biochemical markers associated with salt tolerance and could be applied in stevia breeding programs (marker-assisted selection). This investigation recommends stevia variety Sugar High A3 to be cultivated under salt conditions.


Sign in / Sign up

Export Citation Format

Share Document