Direct Microscopic Observation of Forward Osmosis Membrane Fouling

2010 ◽  
Vol 44 (18) ◽  
pp. 7102-7109 ◽  
Author(s):  
Yining Wang ◽  
Filicia Wicaksana ◽  
Chuyang Y. Tang ◽  
Anthony G. Fane
Desalination ◽  
2015 ◽  
Vol 366 ◽  
pp. 113-120 ◽  
Author(s):  
Gang Chen ◽  
Zhouwei Wang ◽  
Long D. Nghiem ◽  
Xue-Mei Li ◽  
Ming Xie ◽  
...  

2016 ◽  
Vol 6 (4) ◽  
pp. 533-543 ◽  
Author(s):  
W. D. Wang ◽  
M. Esparra ◽  
H. Liu ◽  
Y. F. Xie

This study evaluated the feasibility of forward osmosis (FO) in diluting and reusing the concentrate produced in a reverse osmosis (RO) plant in James City County, VA. Secondary treated wastewater (STW) was used as the feed solution. Findings indicated that pH had slight effects on the water flux of the FO membrane. As the concentration of total dissolved solids (TDS) in the concentrate was diluted from 12.5 to 1.0 g/L or the temperature in the STW decreased from 23 to 10 °C, the membrane flux decreased from 2.2 to 0.59 and 0.81 L/(m2 h), respectively. The FO membrane showed a good performance in the rejection of organic pollutants, with only a small part of the protein-like substances and disinfection byproducts permeating to the diluted concentrate. During an 89-hour continuous operation, water flux decline due to membrane fouling was not observed. Controlling the TDS in the second-stage FO effluent at 1.5 g/L, approximately 8.3% of the pump energy input could be saved. The consumption of groundwater was reduced from 22.7 × 103 to 10.6 × 103 m3/d. FO was proved to be an effective method in both diluting the discharged concentrate and reducing the energy consumption of RO.


2018 ◽  
Vol 247 ◽  
pp. 730-735 ◽  
Author(s):  
Yue Gao ◽  
Zhou Fang ◽  
Peng Liang ◽  
Xia Huang

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1710 ◽  
Author(s):  
Mirjalal Babayev ◽  
Hongbo Du ◽  
Venkata S. V. Botlaguduru ◽  
Raghava R. Kommalapati

Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.


Sign in / Sign up

Export Citation Format

Share Document