scholarly journals Zwitterion-Modified Ultrafiltration Membranes for Permian Basin Produced Water Pretreatment

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1710 ◽  
Author(s):  
Mirjalal Babayev ◽  
Hongbo Du ◽  
Venkata S. V. Botlaguduru ◽  
Raghava R. Kommalapati

Unconventional oil and gas extraction generates large quantities of produced water (PW). Due to strict environmental regulations, it is important to recover and reuse PW. In this study, commercial polyethersulfone (PES) ultrafiltration (UF) membranes were surface-modified with zwitterionic polymer 3-(3,4-Dihydroxyphenyl)-l-alanine (l-DOPA) solution to alleviate membrane fouling during the ultrafiltration of shale oil PW of the Permian Basin. UF membranes were coated in l-DOPA solution by using a dip coating technique. Membrane characterization tests confirmed successful l-DOPA coating on UF membranes. While performing the experiments, permeate flux behaviors of the uncoated and coated membranes and antifouling resistance of the zwitterionic coating were evaluated. Among the coated UF membranes with varying coating times from one day to three days, the three-day coated UF membrane showed a good flux performance and the highest fouling resistance. The flux reduced by 38.4% for the uncoated membrane, while the reduction was 16% for the three-day coated membrane after the 5 h ultrafiltration of PW. Both improvements of the flux performance and recovery ratio are attributed to a negatively-charged surface developed on the membranes after the zwitterionic coating. The UF pretreatment also improved the flux behavior of the later forward osmosis (FO) process for PW treatment.

2021 ◽  
Author(s):  
Layla Ogletree ◽  
Hongbo Du ◽  
Raghava Kommalapati

The treatment of shale oil & gas produced water is a complicated process since it contains various organic compounds and inorganic impurities. Traditional membrane processes such as reverse osmosis and nanofiltration are challenged when produced water has high salinity. Forward osmosis (FO) and membrane distillation as two emerging membrane technologies are promising for produced water treatment. This chapter will focus on reviewing FO membranes, draw solute, and hybrid processes with other membrane filtration applied to produced water treatment. The barriers to the FO processes caused by membrane fouling and reverse draw solute flux are discussed fully by comparing some FO fabrication technologies, membrane performances, and draw solute selections. The future of the FO processes for produced water treatment is by summarizing life cycle assessment and economic analyses for produced water treatment in the last decade.


Author(s):  
Sina Jahangiri Mamouri ◽  
Volodymyr V. Tarabara ◽  
André Bénard

Deoiling of produced or impaired waters associated with oil and gas production represents a significant challenge for many companies. Centrifugation, air flotation, and hydrocyclone separation are the current methods of oil removal from produced water [1], however the efficiency of these methods decreases dramatically for droplets smaller than approximately 15–20 μm. More effective separation of oil-water mixtures into water and oil phases has the potential to both decrease the environmental footprint of the oil and gas industry and improve human well-being in regions such as the Gulf of Mexico. New membrane separation processes and design of systems with advanced flow management offer tremendous potential for improving oil-water separation efficacy. However, fouling is a major challenge in membrane separation [2]. In this study, the behavior of oil droplets and their interaction with crossflow filtration (CFF) membranes (including membrane fouling) is studied using computational fluid dynamics (CFD) simulations. A model for film formation on a membrane surface is proposed for the first time to simulate film formation on membrane surfaces. The bulk multiphase flow is modeled using an Eulerian-Eulerian multiphase flow model. A wall film is developed from mass and momentum balances [3] and implemented to model droplet deposition and membrane surface blockage. The model is used to predict film formation and subsequent membrane fouling, and allow to estimate the actual permeate flux. The results are validated using available experimental data.


Author(s):  
N. Chin ◽  
S. O. Lai ◽  
K. C. Chong ◽  
S. S. Lee ◽  
C. H. Koo ◽  
...  

The study was concerned with the treatment of tank dewatering produced water using hybrid microfiltration (MF) and ultrafiltration (UF) processes. The pre-treatment MF membrane was fabricated with polyethersulfone (PES), n-methyl-2-pyrrolidone (NMP) and polyvinylpyrrolidone (PVP). The UF membranes meanwhile contained additional component, i.e., titanium dioxide (TiO2) nanoparticles in the range of zero to 1.0 wt.%. The membrane performances were analysed with respect to permeate flux, oil removal and flux recovery ratio. An increase in TiO2 nanoparticles enhanced the pore formation, porosity and pure water permeability due to improved hydrophilicity. The permeate flux of UF membranes increased with the increase of TiO2 nanoparticles and pressure. The oil removal rate by MF process was only 52.35%, whereas the oil rejection efficiency was between 82.34% and 95.71% for UF process. It should be highlighted that the overall oil removal rate could achieve as high as 97.96%. Based on the results, the PES membrane incorporated with 1.0 wt.% TiO2 was proved to be the most promising membrane at a transmembrane pressure of 3 bar. Although 1.0 M NaOH solution could be used as cleaning agent to recover membrane water flux, it is not capable of achieving good results as only 52.18% recovery rate was obtained.


2016 ◽  
Vol 32 (6) ◽  
Author(s):  
Subrata Mondal

AbstractProduced water (PW) from the oil/gas field is an important waste stream. Due to its highly pollutant nature and large volume of generation, the management of PW is a significant challenge for the petrochemical industry. The treatment of PW can improve the economic viability of oil and gas exploration, and the treated water can provide a new source of water in the water-scarce region for some beneficial uses. The reverse osmosis (RO) and selective nanofiltration (NF) membrane treatment of PW can reduce the salt and organic contents to acceptable levels for some beneficial uses, such as irrigation, and different industrial reuses. However, membrane fouling is a major obstacle for the membrane-based treatment of PW. In this review, the author discusses the polymeric membrane (mainly RO/NF) fouling during PW treatment. Membrane fouling mechanisms by various types of foulants, such as organic, inorganic, colloidal, and biological matters, are discussed. The review concludes with some of the measures to control fouling by membrane surface modification approaches.


2017 ◽  
Vol 76 (11) ◽  
pp. 3160-3170 ◽  
Author(s):  
Wanzhu Zhang ◽  
Lin Wang ◽  
Bingzhi Dong

Abstract The fouling behavior during forward osmosis (FO) was investigated. Tannic acid was used as a model organic foulant for natural organic matter analysis since the main characteristics are similar, and calcium ions were added at different concentrations to explore the anti-pollution capability of FO membranes. The initial permeate flux and calcium ions strength were varied in different operating conditions to describe membrane fouling with membrane cleaning methods. The observed flux decline in FO changed dramatically with the type of foulant and the type of draw solution used to provide the osmotic driving force. Calcium ions aggravated membrane fouling and decreased transmembrane flux. Membrane cleaning methods included physical and physicochemical approaches, and there was no obvious difference among the typical cleaning methods (i.e., membrane flushing with different types of cleaning fluids at various crossflow velocities and backwashing with varying osmotic driving forces) with respect to flux recovery. Ultrasonic cleaning damaged the membrane structure and decreased permeate flux, and reverse diffusion of salt from the draw solution to the feed side accelerated after cleaning.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Marek Gryta

AbstractMembrane distillation was used to produce demineralized water from ground water. The influence of feed water pretreatment carried out in a contact clarifier (softening with Ca(OH)2 and coagulation with FeSO4 · 7H2O) followed by filtration, on the process effectiveness was evaluated. It was found that the chemical pretreatment decreased the membrane fouling; however, the degree of water purification was insufficient because precipitation of small amounts of deposit on the membrane surface during the process operation was still observed. The permeate flux was gradually decreasing as a result of scaling. The morphology and composition of the fouling layer were studied using scanning electron microscopy coupled with energy dispersion spectrometry. The presence of significant amounts of silica, apart from calcium and magnesium, was determined in the formed deposit. The removal of foulants by heterogeneous crystallization performed inside the filter (70 mesh), assembled directly at the module inlet, was found to be a solution preventing the membrane scaling.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Nita Aryanti ◽  
Qudratun Qudratun ◽  
Via Dolorosa Tambunan ◽  
Natalia Rosa Simanjuntak

Produced water is the side product of the oil and gas processing. This water is different from any common water because it contains the dangerous chemical substances and matters in the oil and gas. The usage of produced water and unprocessed waste of produced water contains a lot of dangerous substances that can endanger the environmental stability. The right processing is all that it needs to make produced water that is drinkable or usable. The membrane technology is one of the alternative waste water treatment technologies. But, as in the usage, it still lacks in the field of fouling and cannot fulfilled the specification of usable water. Thus, this becomes the reason that bases this research. In this paper, there will be made a polyethersulfone membrane with an inversion phase method and an addition of Nano-antifouling compound, ZnO. The experimental results show that the TDS value of produced water decreased from 6600 into 1500 mg/L. Nano ZnO addition of 1.5 wt-% increase the permeate flux from 28 to 43 L/m2.hr. The UV irradiation on the membrane increase the initial flux from 28 to 48 L/m2.hr and also increase the TDS rejection from 16 to 25%. This shows that by using Polyethersulfone (PES)-ZnO membrane, we can increase the separation performance. Hence, this method is suitable for processing the produced water into usable water.


Sign in / Sign up

Export Citation Format

Share Document