Methodologies for Assessing the Use-Phase Power Consumption and Greenhouse Gas Emissions of Telecommunications Network Services

2012 ◽  
Vol 47 (1) ◽  
pp. 485-492 ◽  
Author(s):  
Chien A. Chan ◽  
André F. Gygax ◽  
Elaine Wong ◽  
Christopher A. Leckie ◽  
Ampalavanapillai Nirmalathas ◽  
...  
Author(s):  
Miroslav Variny ◽  
Dominika Jediná ◽  
Miroslav Rimár ◽  
Ján Kizek ◽  
Marianna Kšiňanová

Oxygen production in cryogenic air separation units is related to a significant carbon footprint and its supply in the medicinal sphere became critical during the recent COVID-19 crisis. An improved unit design was proposed, utilizing a part of waste heat produced during air pre-cooling and intercooling via absorption coolers, to reduce power consumption. Variable ambient air humidity impact on compressed air dryers’ regeneration was also considered. A steady-state process simulation of a model 500 t h−1 inlet cryogenic air separation unit was performed in Aspen Plus® V11. Comparison of a model without and with absorption coolers yielded an achievable reduction in power consumption for air compression and air dryer regeneration by 6 to 9% (23 to 33 GWh year−1) and a favorable simple payback period of 4 to 10 years, both depending on air pressure loss in additional heat exchangers to be installed. The resulting specific oxygen production decrease amounted to EUR 2–4.2 t−1. Emissions of major gaseous pollutants from power production were both calculated by an in-house developed thermal power plant model and adopted from literature. A power consumption cut was translated into the following annual greenhouse gas emission reduction: CO2 16 to 30 kilotons, CO 0.3 to 2.3 tons, SOx 4.7 to 187 tons and NOx 11 to 56 tons, depending on applied fossil fuel-based emission factors. Considering a more renewable energy sources-containing energy mix, annual greenhouse gas emissions decreased by 50 to over 80%, varying for individual pollutants.


2002 ◽  
Vol 13 (6) ◽  
pp. 833-850
Author(s):  
Caleb Stewart ◽  
Mir-Akbar Hessami

This paper presents information related to greenhouse gas emissions due to the power consumption of the following household appliances: refrigerators, clothes washers, clothes dryers, freezers, and dishwashers; a possible extension to this analysis would include heaters and air-conditioners. Actual energy consumption data for the period 1993 to 1999 were used to estimate the total carbon dioxide emissions for 1994 to 2009 incremented at 5 years; these data can also be used to estimate the energy consumption of these appliances for 2008–2012 with reference to 1990 for reasons of comparison under the Kyoto Protocol. The total carbon dioxide equivalent emissions for the above household appliances show a peak of 29.6 mega-tonnes CO2 around 1999 with a decreasing trend post 1999 to 27.4 mega-tonnes CO2 in 2009. Details of the analysis for selected appliances show that refrigerators account for over half of total emissions, decreasing from 60.1% in 1994 to 51.6% in 2009. The aggregate trend activity was found to highly depend on the trend activity for emissions for refrigerators. The trend activity for freezers, clothes dryers and clothes washers is increasing for consecutive years from 1994 to 2009 defying the trend exhibited by refrigerators and dishwashers. The reason for this discrepancy is the relatively higher decreases in kWh/annum for refrigerators and dishwashers in contrast to other appliances. The energy consumption curves for each appliance take this differential into account. The energy consumption curve for refrigerators predicts a much faster decrease in kWh/annum than for other appliances thus causing the downward trend post 1999.


2009 ◽  
pp. 107-120 ◽  
Author(s):  
I. Bashmakov

On the eve of the worldwide negotiations of a new climate agreement in December 2009 in Copenhagen it is important to clearly understand what Russia can do to mitigate energy-related greenhouse gas emissions in the medium (until 2020) and in the long term (until 2050). The paper investigates this issue using modeling tools and scenario approach. It concludes that transition to the "Low-Carbon Russia" scenarios must be accomplished in 2020—2030 or sooner, not only to mitigate emissions, but to block potential energy shortages and its costliness which can hinder economic growth.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Sign in / Sign up

Export Citation Format

Share Document