Effects of exhaust gas temperature and fuel composition on particulate emission from spark ignition engines

1973 ◽  
Vol 7 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Robert E. Sampson ◽  
George S. Springer
2016 ◽  
Vol 819 ◽  
pp. 272-276 ◽  
Author(s):  
Ali Ghanaati ◽  
Mohd Farid Muhamad Said ◽  
Intan Zaurah Mat Darus ◽  
Amin Mahmoudzadeh Andwari

The performance of Spark Ignition (SI) engines in terms of thermal efficiency can be restricted by knock. Although it is common for all SI engines to exhibit knock from compressed end-gas, knocks from surface ignition remains a more serious problem due to its effect on combustion stability and its obscurity to detect. This paper focuses on predicting the occurrence of knocks from surface ignition by monitoring exhaust gas temperature (EGT). EGT measured during an engine cycle without the spark plug firing. Therefore, EGT rises illustrated any combustion made by surface ignition. Modelling and simulation of a one-dimensional engine combustion done by using GT-Power. The new approach reduces the complexity as EGT monitoring does not require high computational demands, and the EGT signals are robust to noise. The method is validated against a variety of fuel properties and across engine conditions. A new approach is proposed as a measure to predict and detect the knock events.


2014 ◽  
Vol 555 ◽  
pp. 375-384 ◽  
Author(s):  
Stelian Tarulescu ◽  
Adrian Soica

This paper present a study regarding the emissions produced at the engine cold start. Also, the paper presents a brief survey of current extra emissions estimation methods. The main goal of this work is to describe the relative cold start extra emissions as a function of exhaust gas temperature. Experimental research has been done for a light vehicle, Dacia Sandero, equipped with a 1390 cm3 Renault spark ignition engine (Power = 55 kW at 5500 rpm). There were been made several tests, in different temperature conditions, in the could season, using a portable analyzer, GA-21 plus (produced by Madur Austria). The parameters measured with the analyzer and used in the analysis are: CO, NO, NOx and SO2. It was concluded that the highest pollutants values ​​are recorded until the point when the catalyst comes into operation (when the gas temperature entering the catalyst is approx. 200 oC) and exhaust gas temperature is 40-50 oC. In order to accomplish a mathematical approximation of CO, NO and SO2 in function of exhaust gas temperature, logarithmic approximations and polynomial regressions were used. The curves resulted from the mathematical model can be used to approximate the level of CO, NO and SO2, for similar vehicles.


2021 ◽  
Vol 09 (08) ◽  
pp. 53-78
Author(s):  
Joseph Lungu ◽  
Lennox Siwale ◽  
Rudolph Joe Kashinga ◽  
Shadreck Chama ◽  
Akos Bereczky

Author(s):  
Karthik Nithyanandan ◽  
Chia-fon F. Lee ◽  
Han Wu ◽  
Jiaxiang Zhang

Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuels which typically emit fewer pollutants, but also lowers the cost of fuel recovery for each individual component during fermentation. An experiment was conducted using a Ford single-cylinder spark-ignition (SI) research engine to investigate the potential of ABE as an SI engine fuel. Blends of pure gasoline and ABE, ranging from 0% to 80% vol. ABE, were created and the performance and emission characteristics were compared with pure gasoline as the baseline. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxides were used to compare the fuels in terms of combustion byproducts. Experiments were performed at a constant engine speed and a comparison was made on the basis of similar power output (Brake Mean Effective Pressure (BMEP)). In-cylinder pressure data showed that the peak pressure of all the blends was slightly lower than that of gasoline, except for ABE80 which showed a slightly higher and advanced peak relative to gasoline. ABE showed an increase in brake specific fuel consumption (BSFC); while exhaust gas temperature and nitrogen oxide measurements show that ABE combusts at a lower peak temperature. The emissions of unburned hydrocarbons were higher compared to those of gasoline but the CO emissions were lower. Of particular interest is the combined effect of the higher laminar flame speed (LFS) and higher latent heat of vaporization of ABE fuels on the combustion process.


2020 ◽  
pp. 431-434
Author(s):  
Oliver Arndt

This paper deals with the conversion of coke fired lime kilns to gas and the conclusions drawn from the completed projects. The paper presents (1) the decision process associated with the adoption of the new technology, (2) the necessary steps of the conversion, (3) the experiences and issues which occurred during the first campaign, (4) the impacts on the beet sugar factory (i.e. on the CO2 balance and exhaust gas temperature), (5) the long term impressions and capabilities of several campaigns of operation, (6) the details of available technologies and (7) additional benefits that would justify a conversion from coke to natural gas operation on existing lime kilns. (8) Forecast view to develop systems usable for alternative gaseous fuels (e.g. biogas).


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


Sign in / Sign up

Export Citation Format

Share Document