Performance and Emissions of Acetone-Butanol-Ethanol (ABE) and Gasoline Blends in a Port Fuel Injected Spark Ignition Engine

Author(s):  
Karthik Nithyanandan ◽  
Chia-fon F. Lee ◽  
Han Wu ◽  
Jiaxiang Zhang

Acetone-Butanol-Ethanol (ABE), an intermediate product in the ABE fermentation process for producing bio-butanol, is considered a promising alternative fuel because it not only preserves the advantages of oxygenated fuels which typically emit fewer pollutants, but also lowers the cost of fuel recovery for each individual component during fermentation. An experiment was conducted using a Ford single-cylinder spark-ignition (SI) research engine to investigate the potential of ABE as an SI engine fuel. Blends of pure gasoline and ABE, ranging from 0% to 80% vol. ABE, were created and the performance and emission characteristics were compared with pure gasoline as the baseline. Measurements of brake torque and exhaust gas temperature along with in-cylinder pressure traces were used to study the performance of the engine and measurements of emissions of unburned hydrocarbons, carbon monoxide, and nitrogen oxides were used to compare the fuels in terms of combustion byproducts. Experiments were performed at a constant engine speed and a comparison was made on the basis of similar power output (Brake Mean Effective Pressure (BMEP)). In-cylinder pressure data showed that the peak pressure of all the blends was slightly lower than that of gasoline, except for ABE80 which showed a slightly higher and advanced peak relative to gasoline. ABE showed an increase in brake specific fuel consumption (BSFC); while exhaust gas temperature and nitrogen oxide measurements show that ABE combusts at a lower peak temperature. The emissions of unburned hydrocarbons were higher compared to those of gasoline but the CO emissions were lower. Of particular interest is the combined effect of the higher laminar flame speed (LFS) and higher latent heat of vaporization of ABE fuels on the combustion process.

2014 ◽  
Vol 555 ◽  
pp. 375-384 ◽  
Author(s):  
Stelian Tarulescu ◽  
Adrian Soica

This paper present a study regarding the emissions produced at the engine cold start. Also, the paper presents a brief survey of current extra emissions estimation methods. The main goal of this work is to describe the relative cold start extra emissions as a function of exhaust gas temperature. Experimental research has been done for a light vehicle, Dacia Sandero, equipped with a 1390 cm3 Renault spark ignition engine (Power = 55 kW at 5500 rpm). There were been made several tests, in different temperature conditions, in the could season, using a portable analyzer, GA-21 plus (produced by Madur Austria). The parameters measured with the analyzer and used in the analysis are: CO, NO, NOx and SO2. It was concluded that the highest pollutants values ​​are recorded until the point when the catalyst comes into operation (when the gas temperature entering the catalyst is approx. 200 oC) and exhaust gas temperature is 40-50 oC. In order to accomplish a mathematical approximation of CO, NO and SO2 in function of exhaust gas temperature, logarithmic approximations and polynomial regressions were used. The curves resulted from the mathematical model can be used to approximate the level of CO, NO and SO2, for similar vehicles.


2021 ◽  
Vol 09 (08) ◽  
pp. 53-78
Author(s):  
Joseph Lungu ◽  
Lennox Siwale ◽  
Rudolph Joe Kashinga ◽  
Shadreck Chama ◽  
Akos Bereczky

Author(s):  
Emiliano Pipitone ◽  
Salvatore Caltabellotta

Abstract In-cylinder expansion of internal combustion engines based on Diesel or Otto cycles cannot be completely brought down to ambient pressure, causing a 20% theoretical energy loss. Several systems have been implemented to recover and use this energy such as turbocharging, turbo-mechanical and turbo-electrical compounding, or the implementation of Miller Cycles. In all these cases however, the amount of energy recovered is limited allowing the engine to reach an overall efficiency incremental improvement between 4% and 9%. Implementing an adequately designed expander-generator unit could efficiently recover the unexpanded exhaust gas energy and improve efficiency. In this work, the application of the expander-generator unit to a hybrid propulsion vehicle is considered, where the onboard energy storage receives power produced by an expander-generator, which could hence be employed for vehicle propulsion through an electric drivetrain. Starting from these considerations, a simple but effective modelling approach is used to evaluate the energetic potential of a spark-ignition engine electrically supercharged and equipped with an exhaust gas expander connected to an electric generator. The overall efficiency was compared to a reference turbocharged engine within a hybrid vehicle architecture. It was found that, if adequately recovered, the unexpanded gas energy could reduce engine fuel consumption and related pollutant emissions by 4% to 12%, depending on overall power output.


Author(s):  
Hyunjun Lee ◽  
Jaesik Shin ◽  
Manbae Han ◽  
Myoungho Sunwoo

The successful utilization of a diesel particulate filter (DPF) to reduce particulate matter (PM) in a passenger car diesel engine necessitates a periodic regeneration of the DPF catalyst without deterioration of the drivability and emission control performance. For successful active DPF regeneration, the exhaust gas temperature should be over 500 °C to oxidize the soot loaded in the DPF. Previous research increased the exhaust gas temperature by applying early and late post fuel injection with a look-up table (LUT) based feedforward control implemented into the engine management system (EMS). However, this method requires enormous calibration work to find the optimal timing and quantity of the main, early, and late post fuel injection with less certainty of accurate torque control. To address this issue, we propose a cylinder pressure based multiple fuel injection (MFI) control method for active DPF regeneration. The feedback control of the indicated mean effective pressure (IMEP), lambda, and DPF upstream temperature was applied to precisely control the injection quantity of the main, early, and late post fuel injection. To determine their fuel injection timings, a mass fraction burned 60% after location of the rate of heat release maximum (MFB60aLoROHRmax) was proposed based on the cylinder pressure information. The proposed control method was implemented in an in-house EMS and validated at several engine operating conditions. During the regeneration period, the exhaust gas temperature tracked the desired temperature, and the engine torque fluctuation was minimized with minimal PM and NOx emissions.


Author(s):  
F. Morey ◽  
P. Seers ◽  
D. Gardiner

This paper presents a concept of an exhaust temperature sensor as a method to monitor cyclic variability of combustion. The goal is to determine if the cycle-to-cycle fluctuations of the sensor can be related to the cyclic variability of combustion as measured by a pressure transducer. Experiments were conducted with a port fuel spark ignition engine at different engine speeds and loads. For each operating point, different spark timing and different excess ratios were used to evaluate the sensitivity of the temperature-based sensor to quantify the cyclic variability of combustion as measured by the Coefficient of Variation (COV). The results demonstrated the sensitivity of the concept to relatively low levels of cyclic variability (circa 1–3% COV of IMEP). At a given speed and load, changes in cyclic variability indicated by in-cylinder pressure measurement were, in general, reproduced by the sensor. The relationship between the cyclic variability indications provided by the two sensors varied as the speed and load were changed.


Sign in / Sign up

Export Citation Format

Share Document