Carbothermal Synthesis of Carbon-supported Nanoscale Zero-valent Iron Particles for the Remediation of Hexavalent Chromium

2008 ◽  
Vol 42 (7) ◽  
pp. 2600-2605 ◽  
Author(s):  
Laura B. Hoch ◽  
Elizabeth J. Mack ◽  
Bianca W. Hydutsky ◽  
Jessica M. Hershman ◽  
Joanna M. Skluzacek ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (22) ◽  
pp. 12428-12435 ◽  
Author(s):  
Shifeng Li ◽  
Tingting You ◽  
Yang Guo ◽  
Shuhua Yao ◽  
Shuyan Zang ◽  
...  

A one-step carbothermal synthesis and characterization of biochar-supported nanoscale zero-valent iron (nZVI/BC) was performed for the removal of hexavalent chromium (Cr(vi)) from aqueous solution.


2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


2019 ◽  
Vol 364 ◽  
pp. 591-599 ◽  
Author(s):  
María T. Gómez-Sagasti ◽  
Lur Epelde ◽  
Mikel Anza ◽  
Julen Urra ◽  
Itziar Alkorta ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (61) ◽  
pp. 35062-35072 ◽  
Author(s):  
Yanchang Zhang ◽  
Lin Zhao ◽  
Yongkui Yang ◽  
Peizhe Sun

The whole possible process of ONZ removal by nZVI. The reduction on the surface of nZVI was the main mechanism. A potential pathway including dechlorination, nitro reduction, N-denitration, and cleavage was proposed for the degradation process.


Sign in / Sign up

Export Citation Format

Share Document