THE SELF-JUDGMENT PRINCIPLE IN SCIENTIFIC DATA PROCESSING

1963 ◽  
Vol 55 (4) ◽  
pp. 29-32 ◽  
Author(s):  
P. A. D. de Maine ◽  
R. D. Seawright
Somatechnics ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 284-304
Author(s):  
Patricia Adams

Contemporary scientific discoveries are rapidly modifying established concepts of embodiment and corporeality. For example, developing techniques in adult stem cell research can actively remodel the human body; whilst neuroscientists are shedding increasing light on the functioning of our brains. My research at the art/science nexus draws upon recent media theories to investigate the ways twenty-first century constructs of ‘humanness’ and the ‘self’ are affected by both historical and contemporary scientific research and developments in digital imaging technologies. In this article, examples from my artworks: “machina carnis” and “HOST” illustrate how my use of innovative digital technologies and collaborative methodologies has enabled me to immerse myself in the scientific experience at first hand. I demonstrate how my reinterpretations of what is commonly termed ‘hard’ scientific research data does not seek to emulate ‘objective’ readings of the experimental digital image data but rather recontextualises it in the context of my artworks. These artworks acknowledge the personal and visceral content in the scientific data and enable viewer/participants to reflect upon the issues raised from an emotive and individual perspective.


Author(s):  
Y. Xu ◽  
L. P. Xin ◽  
X. H. Han ◽  
H. B. Cai ◽  
L. Huang ◽  
...  

GWAC will have been built an integrated FOV of 5,000 degree2 and have already built 1,800 square degree2. The limit magnitude of a 10-second exposure image in the moonless night is 16R. In each observation night, GWAC produces about 0.7TB of raw data, and the data processing pipeline generates millions of single frame alerts. We describe the GWAC Data Processing and Management System (GPMS), including hardware architecture, database, detection-filtering-validation of transient candidates, data archiving, and user interfaces for the check of transient and the monitor of the system. GPMS combines general technology and software in astronomy and computer field, and use some advanced technologies such as deep learning. Practical results show that GPMS can fully meet the scientific data processing requirement of GWAC. It can online accomplish the detection, filtering and validation of millions of transient candidates, and feedback the final results to the astronomer in real-time. During the observation from October of 2018 to December of 2019, we have already found 102 transients.


2020 ◽  
Vol 19 (1) ◽  
pp. 55-63
Author(s):  
Farid Ma'ruf ◽  
Hapsoro Agung Jatmiko

Online taxibike servicehas its own charm because it is a new breakthrough for current conditions that make it easy for consumers to order a vehicle. Riding a motorcycle is an activity that requires awareness against road conditions that are dynamic and can change in seconds. This study aims to determine the level of awareness of online taxibikedriver when using a GPS and non GPS. The method used in this research is the QUASA method which combines the probing method in the situational awareness process with the self rating method. The results of data processing obtained that the value of actual accuracy and perceived accuracy when online taxibikedriver uses a GPS is greater than non GPS. In addition, other results stated that the level of awareness of online taxibikedriver when using a GPS was 4.7% greater than when without non GPS.


2014 ◽  
Vol 60 ◽  
pp. 241-249 ◽  
Author(s):  
Krista Gaustad ◽  
Tim Shippert ◽  
Brian Ermold ◽  
Sherman Beus ◽  
Jeff Daily ◽  
...  

2009 ◽  
Vol 5 (S261) ◽  
pp. 296-305 ◽  
Author(s):  
Lennart Lindegren

AbstractThe scientific objectives of the Gaia mission cover areas of galactic structure and evolution, stellar astrophysics, exoplanets, solar system physics, and fundamental physics. Astrometrically, its main contribution will be the determination of millions of absolute stellar parallaxes and the establishment of a very accurate, dense and faint non-rotating optical reference frame. With a planned launch in spring 2012, the project is in its advanced implementation phase. In parallel, preparations for the scientific data processing are well under way within the Gaia Data Processing and Analysis Consortium. Final mission results are expected around 2021, but early releases of preliminary data are expected. This review summarizes the main science goals and overall organisation of the project, the measurement principle and core astrometric solution, and provide an updated overview of the expected astrometric performance.


2012 ◽  
Vol 24 (5) ◽  
pp. 327-334 ◽  
Author(s):  
Luis David Patiño-Lopez ◽  
Klaas Decanniere ◽  
Jose Antonio Gavira ◽  
Dominique Maes ◽  
Fermín Otalora

Author(s):  
Ambarwati Ambarwati ◽  
Edi Winarko

AbstrakBerita merupakan sumber informasi yang dinantikan oleh manusia setiap harinya. Manusia membaca berita dengan kategori yang diinginkan. Jika komputer mampu mengelompokkan berita secara otomatis maka tentunya manusia akan lebih mudah membaca berita sesuai dengan kategori yang diinginkan. Pengelompokan berita yang berupa artikel secara otomatis sangatlah menarik karena mengorganisir artikel berita secara manual membutuhkan waktu dan biaya yang tidak sedikit.Tujuan penelitian ini adalah membuat sistem aplikasi untuk pengelompokkan artikel berita dengan menggunakan algoritma Self Organizing Map. Artikel berita digunakan sebagai input data. Kemudian sistem melakukan pemrosesan data untuk dikelompokkan. Proses yang dilakukan sistem meliputi preprocessing, feature extraction, clustering dan visualize.Sistem yang dikembangkan mampu menampilkan hasil clustering dengan algoritma Self Organizing Map dan memberikan visualisasi dengan smoothed data histograms berupa island map dari artikel berita. Selain itu sistem dapat menampilkan koleksi dokumen dari lima kategori berita yang ada pada tiap tahunnya dan banyaknya kata (histogram kata) yang sering muncul pada tiap arikel berita. Pengujian dari sistem ini dengan memasukan artikel berita, kemudian sistem memprosesnya dan mampu memberikan hasil cluster dari artikel berita yang dimasukan. Kata kunci—Pengelompokkan berita Indonesia, pengelompokkan berdasar histogram kata, pengelompokan berita menggunakan SOM  Abstract News is awaited information resources by humans every day. Human reading the news with the desired category. If the computer able to news clustering with automatically, humans of course will be easier to read the news according to the desired category. News clustering in the form of news articles with automatically very interesting because it organizes news articles manually takes time and costs not a little bit.The purpose of this research is to create a system application for grouping news articles by using the Self Organizing Map algorithm. News article be used as input into the system. News articles used as input data. Then the system performs data processing until to be clustered. Processes performed by the system covers: preprocessing, feature extraction, clustering and visualize.The system developed is able to display the results clustering of the Self Organizing Map algorithm and gives visualization of the Smoothed Data Histograms in the form of island map from news articles. Additionally the system can display a word histogram and news articles from five categories news in each year. Testing of this system by entering the news articles, then the system performs data processing and gives results of a cluster from news articles that input. Keywords—Indonesia news clustering, clustering based on words histograms, news clustering using SOM


Sign in / Sign up

Export Citation Format

Share Document