Reaction Mechanism and Kinetic Analysis of the Decomposition of Phosphogypsum via a Solid-State Reaction

2010 ◽  
Vol 49 (8) ◽  
pp. 3597-3602 ◽  
Author(s):  
Liping Ma ◽  
Ping Ning ◽  
Shaocong Zheng ◽  
Xuekui Niu ◽  
Wei Zhang ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Juan P. Yasnó ◽  
Susana Conconi ◽  
Arnaldo Visintin ◽  
Gustavo Suárez

AbstractNon-isothermal reaction mechanism and kinetic analysis for the synthesis of monoclinic lithium zirconate (m-Li2ZrO3) were investigated by processing of TG-DTA, along with XRD, DLS, and HRTEM. For this purpose, the solid-state reaction of Li2CO3 with ZrO2 was carried out by TG-DTA at different heating rates (10, 20, and 30 °C/min) from room temperature to 1100 °C. The thermal data was used to calculate the kinetic parameters by two types of isoconversional methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). The reaction mechanism was determined by the model-fitting method, applying the Coats-Redfern (CR) approximation to the different solid-state reaction models. The results confirmed the formation of pure m-Li2ZrO3, consists of semispherical particles of about 490 nm, using a very short reaction time. The average activation energy obtained by FWO and KAS methods were 274.73 and 272.50 kJ/mol, respectively. It was found that the formation of m-Li2ZrO3 from Li2CO3 with ZrO2 is governed by the three-dimensional diffusion mechanism. Based on these results, a microscopic reaction model of the formation of m-Li2ZrO3 was proposed.


2003 ◽  
Vol 18 (1) ◽  
pp. 4-7 ◽  
Author(s):  
Y. C. Sohn ◽  
Jin Yu ◽  
S. K. Kang ◽  
W. K. Choi ◽  
D. Y. Shih

The reaction mechanism between electroless Ni–P and Sn was investigated to understand the effects of Sn on solder reaction-assisted crystallization at low temperatures as well as self-crystallization of Ni–P at high temperatures. Ni3Sn4 starts to form in a solid-state reaction well before Sn melts. Heat of reaction for Ni3Sn4 was measured during the Ni–P and Sn reaction (241.2 J/g). It was found that the solder reaction not only promotes crystallization at low temperatures by forming Ni3P in the P-rich layer but also facilitates self-crystallization of Ni–P by reducing the transformation temperature and heat of crystallization. The presence of Sn reduces the self-crystallization temperature of Ni–P by about 10 °C. The heat of crystallization also decreases with an increased Sn thickness.


2010 ◽  
Vol 21 (29) ◽  
pp. 295603 ◽  
Author(s):  
Parul Sharma ◽  
J V Anguita ◽  
V Stolojan ◽  
S J Henley ◽  
S R P Silva

2017 ◽  
Vol 46 (10) ◽  
pp. 5563-5569 ◽  
Author(s):  
Lu Gao ◽  
Wancheng Zhou ◽  
Fa Luo ◽  
Dongmei Zhu

2011 ◽  
Vol 115 (46) ◽  
pp. 13413-13419 ◽  
Author(s):  
Xuebu Hu ◽  
Ziji Lin ◽  
Kerun Yang ◽  
Zhenghua Deng

Sign in / Sign up

Export Citation Format

Share Document