Determination of Interfacial Areas in a Bubble Column by Different Chemical Methods

2000 ◽  
Vol 39 (7) ◽  
pp. 2541-2547 ◽  
Author(s):  
G. Vázquez ◽  
M. A. Cancela ◽  
C. Riverol ◽  
E. Alvarez ◽  
J. M. Navaza
Author(s):  
Henry S. Slayter

Electron microscopic methods have been applied increasingly during the past fifteen years, to problems in structural molecular biology. Used in conjunction with physical chemical methods and/or Fourier methods of analysis, they constitute powerful tools for determining sizes, shapes and modes of aggregation of biopolymers with molecular weights greater than 50, 000. However, the application of the e.m. to the determination of very fine structure approaching the limit of instrumental resolving power in biological systems has not been productive, due to various difficulties such as the destructive effects of dehydration, damage to the specimen by the electron beam, and lack of adequate and specific contrast. One of the most satisfactory methods for contrasting individual macromolecules involves the deposition of heavy metal vapor upon the specimen. We have investigated this process, and present here what we believe to be the more important considerations for optimizing it. Results of the application of these methods to several biological systems including muscle proteins, fibrinogen, ribosomes and chromatin will be discussed.


Author(s):  
R. J. Narconis ◽  
G. L. Johnson

Analysis of the constituents of renal and biliary calculi may be of help in the management of patients with calculous disease. Several methods of analysis are available for identifying these constituents. Most common are chemical methods, optical crystallography, x-ray diffraction, and infrared spectroscopy. The application of a SEM with x-ray analysis capabilities should be considered as an additional alternative.A scanning electron microscope equipped with an x-ray “mapping” attachment offers an additional dimension in its ability to locate elemental constituents geographically, and thus, provide a clue in determination of possible metabolic etiology in calculus formation. The ability of this method to give an undisturbed view of adjacent layers of elements in their natural state is of advantage in determining the sequence of formation of subsequent layers of chemical constituents.


1983 ◽  
Vol 48 (3) ◽  
pp. 842-853
Author(s):  
Kurt Winkler ◽  
František Kaštánek ◽  
Jan Kratochvíl

Specific gas-liquid interfacial area in flow tubes 70 mm in diameter of the length 725 and 1 450 mm resp. containing various swirl bodies were measured for concurrent upward flow in the ranges of average gas (air) velocities 11 to 35 ms-1 and liquid flow rates 13 to 80 m3 m-2 h-1 using the method of CO2 absorption into NaOH solutions. Two different flow regimes were observed: slug flow swirled annular-mist flow. In the latter case the determination was carried out separately for the film and spray flow components, respectively. The obtained specific areas range between 500 to 20 000 m3 m-2. Correlation parameters are energy dissipation criteria, related to the geometrical reactor volume and to the static liquid volume in the reactor.


1984 ◽  
Vol 39 (1) ◽  
pp. 179-183 ◽  
Author(s):  
G. Quicker ◽  
A. Schumpe ◽  
W.-D. Deckwer

2015 ◽  
Vol 69 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Milica Djekovic-Sevic ◽  
Nevenka Boskovic-Vragolovic ◽  
Ljiljana Takic ◽  
Radmila Garic-Grulovic ◽  
Srdjan Pejanovic

Experimental investigation of gas-liquid mass transfer of ozone in water, in bubble column with two-fluid nozzle gas distributor (BKDM), under different operating conditions, are presented in this work. The main objective was to determine the ozone volumetric mass transfer coefficient, kL a, in calm uniform section of the column, under different values of gas and liquid flow rates. Obtained values of these coefficients were compared with the values in countercurrent bubble column. The critical liquid flowrate, when gas hold up reaches its maximum, was experimentally determined. It was shown that the maximum value of the ozone volumetric mass transfer coefficient is obtained just when liquid flowrate is at its critical value.


Sign in / Sign up

Export Citation Format

Share Document