A theoretical study of lone-pair orbitals in chemical interactions

1985 ◽  
Vol 89 (5) ◽  
pp. 779-782 ◽  
Author(s):  
Hiroshi Fujimoto ◽  
Terumasa Yamasaki ◽  
Itaru Hataue ◽  
Nobuaki Koga
1985 ◽  
Vol 16 (25) ◽  
Author(s):  
H. FUJIMOTO ◽  
T. YAMASAKI ◽  
I. HATAUE ◽  
N. KOGA

1987 ◽  
Vol 40 (12) ◽  
pp. 1923 ◽  
Author(s):  
ID Rae ◽  
ID Rae ◽  
A Staffa ◽  
A Staffa ◽  
AC Diz ◽  
...  

In order to obtain a deeper insight into the title effect, several compounds with an F atom very close to a C-H of a nearby functional group were synthesized and the relevant couplings measured. The most conspicuous case was that of 8-fluoro-2-hydroxynaphthalene-1-carbaldehyde where a close proximity between the F and H atoms is the result of fluorine-oxygen repulsion and the formation of an intramolecular hydrogen bond between the hydroxyl and carbonyl groups. The experimental four-bond J(F,CHO) coupling is 26.2 Hz. A compound very similar to this one, but without the OH group, was chosen on which to perform a polarization propagator analysis of the through-space (TS) coupling pathways, at the RPA-INDO level. The expression for the TS coupling in terms of the projected polarization propagator and perturbators was numerically analysed. It is found that this coupling is completely dominated by a TS component of the Fermi contact (FC) term, the main features of which are: ( i ) It decays exponentially with the F-H distance; (ii) Its main contribution comes from an electron excitation involving the F lone-pair, the C-H bond of the CHO moiety and its corresponding antibonding orbital;(iii) The π-type lone-pair does not contribute to the TS coupling pathway of the FC term.


2019 ◽  
Vol 31 (3) ◽  
pp. 597-601
Author(s):  
A. Sangeetha ◽  
A. Thaminum Ansari ◽  
Jebakumar Jeevanandam ◽  
S. Jayaprakash

Sigmatropic rearrangement reaction of cycloprop-2-en-1-ol and its fluorine derivatives has been studied theoretically in gas phase and its energy barrier has been calculated. Nucleus-independent chemical shift (NICS) shows sigmatropic rearrangement of cycloprop-2-en-1-ol is pericyclic in nature whereas fluorine derivatives show pseudopericyclic and pericyclic nature. Substitution of fluorine atom at ring is found to increase the energy barrier for –OH migration, while substitution at oxygen atom reduces the barrier. To know the involvement of lone pair of electrons during the reaction, lone pair electron present on oxygen atom is locked by hydrogen bonding. CR-CCSD(T)/6-311+G** levels are used to study the reactions more accurately.


2008 ◽  
Vol 6 (3) ◽  
pp. 400-403 ◽  
Author(s):  
Hafid Anane ◽  
Soufiane Houssame ◽  
Abdelali Guerraze ◽  
Abdeladim Guermoune ◽  
Abderrahim Boutalib ◽  
...  

AbstractThe complexation energies of H3BNHnCl3−n (n= 3-0) complexes and the proton affinities of NHnCl3−n compounds have been computed at the G2(MP2) level of theory. G2(MP2) results show that the successive chlorine substitution on the ammonia decreases both the basicity of the NHnCl3−n ligands and the stability of H3BNHnCl3−n complexes. The findings are interpreted in terms of the rehybridisation of the nitrogen lone-pair orbital. The NBO partitioning scheme shows that the variation of the N-H and N-Cl bond lengths, upon complexation, is due to variation of “s” character in these bonds.


2011 ◽  
Vol 9 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Carolina Estarellas ◽  
Antonio Frontera ◽  
David Quiñonero ◽  
Pere Deyà

AbstractThe interplay between two important noncovalent interactions involving different aromatic rings is studied by means of ab initio calculations (MP2/6-31++G**) computing the non-additivity energies. In this study we demonstrate the existence of cooperativity effects when cation-π and lone pair-π interactions coexist in the same system. These effects are studied theoretically using energetic and geometric features of the complexes. In addition we use Bader’s theory of atoms-in-molecules and Molecular Interaction Potential with polarization (MIPp) partition scheme to characterize the interactions. Experimental evidence for this combination of interactions has been obtained from the Cambridge Structural Database.


1990 ◽  
Vol 68 (8) ◽  
pp. 1309-1316 ◽  
Author(s):  
A. C. Hopkinson ◽  
C. F. Rodriquez ◽  
M. H. Lien

Structures for trivalent silyl anions [Formula: see text] and [Formula: see text], where n takes values from 0 to 3, have been optimized at the HF/6-31 + +G* level and single point calculations made at the MP2/6-31 + +G* level (core included). SiH3− and ions containing one halogen invert by the vertex mechanism in which the lone-pair has π-symmetry, and the monosubstituted ions have high barriers (SiH2F− 45.2 kcal/mol and SiH2Cl− 44.0 kcal/mol). Further substitution by halogens results in a change to the edge inversion mechanism involving a T-shaped transition structure with the lone-pair coplanar with the ligands. Barriers (kcal/mol) at the MP2/6-31 + +G* level including ZPE are lower than for the monosubstituted ions and are SiHF2− 35.0, SiF3− 35.9, SiHCl2− 28.4, and SiCl3−32.5. In SiLi3− edge inversion is preferred, but the surface is much flatter and the barrier is low (9.8 kcal/mol). Trivalent silyl radicals SiHnF(3−n), SiHnCl(3−n) and SiFnCl(3−n) (with n having values 0 to 3) have also been examined with the 6-31 + +G* basis set, with optimization at the UHF level and single point calculations at the UMP2 level. Radicals SiH3, SiH2F, SiH2Cl, and SiHCl2 all invert by the vertex mechanism. Increased halogenation results in a change of mechanism and SiF3, SiCl3, SiF2Cl, and SiFCl2 invert by the edge mechanism. For radical SiHF2 the calculated barriers for the two mechanisms are almost identical with the higher level of theory slightly favouring edge inversion. Keywords: inversion mechanism, halogenated silyl radicals and anions.


2012 ◽  
Vol 116 (10) ◽  
pp. 2591-2597 ◽  
Author(s):  
Yunxiang Lu ◽  
Yingtao Liu ◽  
Haiying Li ◽  
Xiang Zhu ◽  
Honglai Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document