Hamiltonian mapping models of molecular fragmentation

1989 ◽  
Vol 93 (19) ◽  
pp. 6947-6957 ◽  
Author(s):  
Pierre Gaspard ◽  
Stuart A. Rice
Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 903
Author(s):  
Xiao-Mei Zhang ◽  
De-Gao Chen ◽  
Shengwen Calvin Li ◽  
Bo Zhu ◽  
Zhong-Jun Li

Macrophages are widely distributed in tissues and function in homeostasis. During cancer development, tumor-associated macrophages (TAMs) dominatingly support disease progression and resistance to therapy by promoting tumor proliferation, angiogenesis, metastasis, and immunosuppression, thereby making TAMs a target for tumor immunotherapy. Here, we started with evidence that TAMs are highly plastic and heterogeneous in phenotype and function in response to microenvironmental cues. We pointed out that efforts to tear off the heterogeneous “camouflage” in TAMs conduce to target de facto protumoral TAMs efficiently. In particular, several fate-mapping models suggest that most tissue-resident macrophages (TRMs) are generated from embryonic progenitors, and new paradigms uncover the ontogeny of TAMs. First, TAMs from embryonic modeling of TRMs and circulating monocytes have distinct transcriptional profiling and function, suggesting that the ontogeny of TAMs is responsible for the functional heterogeneity of TAMs, in addition to microenvironmental cues. Second, metabolic remodeling helps determine the mechanism of phenotypic and functional characteristics in TAMs, including metabolic bias from macrophages’ ontogeny in macrophages’ functional plasticity under physiological and pathological conditions. Both models aim at dissecting the ontogeny-related metabolic regulation in the phenotypic and functional heterogeneity in TAMs. We argue that gleaning from the single-cell transcriptomics on subclonal TAMs’ origins may help understand the classification of TAMs’ population in subclonal evolution and their distinct roles in tumor development. We envision that TAM-subclone-specific metabolic reprogramming may round-up with future cancer therapies.


2019 ◽  
Vol 29 (1) ◽  
pp. 265-274
Author(s):  
Ali Kiadaliri ◽  
Monica Hernández Alava ◽  
Ewa M. Roos ◽  
Martin Englund

Abstract Purpose To develop a mapping model to estimate EQ-5D-3L from the Knee Injury and Osteoarthritis Outcome Score (KOOS). Methods The responses to EQ-5D-3L and KOOS questionnaires (n = 40,459 observations) were obtained from the Swedish National anterior cruciate ligament (ACL) Register for patients ≥ 18 years with the knee ACL injury. We used linear regression (LR) and beta-mixture (BM) for direct mapping and the generalized ordered probit model for response mapping (RM). We compared the distribution of the original data to the distributions of the data generated using the estimated models. Results Models with individual KOOS subscales performed better than those with the average of KOOS subscale scores (KOOS5, KOOS4). LR had the poorest performance overall and across the range of disease severity particularly at the extremes of the distribution of severity. Compared with the RM, the BM performed better across the entire range of disease severity except the most severe range (KOOS5 < 25). Moving from the most to the least disease severity was associated with 0.785 gain in the observed EQ-5D-3L. The corresponding value was 0.743, 0.772 and 0.782 for LR, BM and RM, respectively. LR generated simulated EQ-5D-3L values outside the feasible range. The distribution of simulated data generated from the BM model was almost identical to the original data. Conclusions We developed mapping models to estimate EQ-5D-3L from KOOS facilitating application of KOOS in cost-utility analyses. The BM showed superior performance for estimating EQ-5D-3L from KOOS. Further validation of the estimated models in different independent samples is warranted.


2014 ◽  
Vol 33 (11) ◽  
pp. 1928-1945 ◽  
Author(s):  
Thais Paiva ◽  
Avishek Chakraborty ◽  
Jerry Reiter ◽  
Alan Gelfand

2013 ◽  
Vol 543 ◽  
pp. 30-34 ◽  
Author(s):  
Aljona Ramonova ◽  
Tengiz Butkhuzi ◽  
Viktorija Abaeva ◽  
I.V. Tvauri ◽  
Soslan Khubezhov ◽  
...  

Laser-induced fragmentation and desorption of fragments of PTCDA films vacuum-deposited on GaAs (100) substrate has been studied by time-of-flight (TOF) mass spectroscopy. The main effect caused by pulsed laser light irradiation (pulse duration: 10 ns, photon energy: 2.34 eV and laser fluence ranging from 0.5 to 7 mJ/cm2) is PTCDA molecular fragmentation and desorption of the fragments formed, whereas no desorption of intact PTCDA molecule was detected. Fragments formed are perylene core C20H8, its half C10H4, carbon dioxide, carbon monoxide and atomic oxygen. All desorbing fragments have essentially different kinetic energy. The mechanism of photoinduced molecular fragmentation and desorption is discussed.


2003 ◽  
Vol 22 (10) ◽  
pp. 1649-1660 ◽  
Author(s):  
E. C. Marshall ◽  
D. J. Spiegelhalter

2013 ◽  
Vol 139 (14) ◽  
pp. 144201 ◽  
Author(s):  
Katharine Moore Tibbetts ◽  
Xi Xing ◽  
Herschel Rabitz

2007 ◽  
Vol 75 (2) ◽  
Author(s):  
C. Lefebvre ◽  
T. T. Nguyen-Dang ◽  
O. Atabek

2015 ◽  
Vol 635 (11) ◽  
pp. 112069
Author(s):  
Seyedreza Larimian ◽  
Sonia Erattupuzha ◽  
Erik Lötstedt ◽  
Tamas Szidarovszky ◽  
Raffael Maurer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document