Stereochemistry of the decay-induced gas-phase halogen exchange in diastereomeric 2,3-dichlorobutanes

1974 ◽  
Vol 78 (11) ◽  
pp. 1043-1048 ◽  
Author(s):  
Samuel H. Daniel ◽  
Hans J. Ache ◽  
Gerhard Stoecklin
Keyword(s):  
2005 ◽  
Vol 83 (9) ◽  
pp. 1597-1605 ◽  
Author(s):  
Hiroto Tachikawa

Direct ab initio molecular dynamics (MD) calculations have been carried out for the reaction of cyclopropenyl chloride with halide ion (F–) (F– + (CH)3Cl → F(CH)3 + Cl–) in gas phase. Both SN2 and SN2′ channels were found as product channels. These channels are strongly dependent on the collision angle of F– to the target (CH)3Cl molecule. The collision at one of the carbon atoms of the C=C double bond leads to the SN2′ reaction channel; whereas the collision at the methylene carbon atom leads to the SN2 reaction channel. The reactions proceed via a direct mechanism without long-lived complexes. The reaction mechanism is discussed on the basis of the theoretical results.Key words: SN2 reaction, direct ab initio molecular dynamics, halogen exchange, reaction mechanism.


RSC Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 2824-2828
Author(s):  
Priti Sharma ◽  
Yoel Sasson

Chloride–bromide halogen exchange was realized when a mixture of an alkyl chloride and an alkyl bromide were reacted over a supported molten alkyl phosphonium catalyst.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Sign in / Sign up

Export Citation Format

Share Document