Acid-catalyzed Hydrolysis of Methylal. I. Influence of Strong Acids and Correlation with Hammett Acidity Function

1954 ◽  
Vol 76 (12) ◽  
pp. 3240-3242 ◽  
Author(s):  
Donald McIntyre ◽  
F. A. Long

1964 ◽  
Vol 42 (6) ◽  
pp. 1456-1472 ◽  
Author(s):  
T. E. Timell

First-order rate coefficients and energies and entropies of activation have been determined for the acid-catalyzed hydrolysis of a number of methyl D-glycopyranosides and disaccharides. The relation between the logarithm of the rate coefficients and values for Hammett's acidity function was linear, although different for different acids. All compounds had entropies of activation indicating a unimolecular reaction mechanism. Glucosides of tertiary alcohols were hydrolyzed very rapidly, triethylmethyl β-D-glucopyranoside, for example, 30,000 times taster than the corresponding methyl compound.Increase in size of the aglycone caused a slight increase in the rate of hydrolysis of β-D-glucopyranosides, steric hindrance thus being of no significance. Electron-attracting substituents in the aglycone had little or no influence on the rate of hydrolysis, obviously because they would tend to lower the equilibrium concentration of the conjugate acid, while facilitating the subsequent heterolysis, the two opposing effects more or less cancelling out. These results were discussed in connection with recent studies on the acid hydrolysis of various phenyl glycopyranosides and with reference to the postulated occurrence of an activating inductive effect in oligo- and poly-saccharides containing carboxyl or other electronegative groups at C-5. It was concluded that there is little evidence for the existence of any such effect and that, for example, pseudoaldobiouronic acids should be hydrolyzed at the same rate as corresponding neutral disaccharides.



2002 ◽  
Vol 80 (1) ◽  
pp. 82-88
Author(s):  
Y Chiang ◽  
A J Kresge ◽  
Q Meng

Rates of acid-catalyzed hydrolysis of 3-diazobenzofuran-2-one, measured in concentrated aqueous perchloric acid and hydrochloric acid solutions, were found to correlate well with the Cox–Yates Xo excess acidity function, giving kH+ = 1.66 × 10–4 M–1 s–1, m‡ = 0.86 and kH+ /kD+ = 2.04. The normal direction (kH/kD > 1) of this isotope effect indicates that hydrolysis occurs by rate-determining protonation of the substrate on its diazo-carbon atom. It was found previously that the next higher homolog of the present substrate, 4-diazoisochroman-3-one, also undergoes hydrolysis by this reaction mechanism but with a rate constant 15 times greater than that for the present substrate; this difference in reactivity can be understood in terms of the various resonance forms that contribute to the structures of these substrates. The product of the present hydrolysis reaction is 3-hydroxybenzofuran-2-one, which itself quickly undergoes subsequent acid-catalyzed hydrolysis to 2-hydroxymandelic acid. The acidity dependence of this subsequent hydrolysis is much shallower than that of the diazo compound precursor, and rates of reaction correlate as well with [H+] as with Xo. This is due in part to incursion of a nonproductive protonation on the hydroxy group of 3-hydroxy benzo furan-2-one that impedes hydrolysis and produces saturation of acid catalysis. Rates of hydrolysis of the hydroxy compound were also measured in dilute HClO4 and NaOH solutions as well as in CH3CO2H, H2PO4–, (CH2OH)3CNH3+, and NH4+ buffers, and the rate profile constructed from these data showed the presence of uncatalyzed and hydroxide ion-catalyzed reactions. This hydroxide-ion catalysis became saturated at [NaOH] [Formula: see text] 0.05 M, implying occurrence of yet another nonproductive substrate ionization. Key words: diazo compound hydrolysis, lactone hydrolysis, Cox–Yates excess acidity, acid catalysis, alcohol protonation.



1959 ◽  
Vol 37 (4) ◽  
pp. 788-794 ◽  
Author(s):  
J. Koskikallio ◽  
E. Whalley

The acid-catalyzed hydrolysis of diethyl ether has been measured in the temperature range 120–160 °C at low acid concentrations; the entropy of activation is −9.0 ± ~2.5 cal deg−1 mole−1. The effect of pressures up to 3000 atm has been measured at 161.2 °C; the volume of activation at 1 atm is −8.5 ± ~2 cm3 mole−1. These two results show that the slow step is bimolecular. The rate in concentrated acids was measured at 119 °C; the rate was much more nearly proportional to the acidity function h0 than to concentration of acid. This is contrary to the predictions of the Zucker–Hammett hypothesis, which is therefore not valid for the hydrolysis of diethyl ether.



1969 ◽  
Vol 47 (6) ◽  
pp. 911-917 ◽  
Author(s):  
E. Buncel ◽  
W. M. J. Strachan

In relation to the intermediacy of azobenzene-4-hydrogen sulfate in the Wallach rearrangement of azoxybenzene, the potassium salt has been characterized and subjected to examination under acidic conditions. A pKa value of −2.14 has been obtained, for N-protonation. The sulfate salt hydrolyzes to p-hydroxyazobenzene in acid media and the rate of the reaction has been measured over the region 22–42% H2SO4 at 25° spectrophotometrically. A correlation between rate and acidity function indicates that a two-proton process is involved; a reactive species is proposed having a nitrogen and the phenolic oxygen protonated. The relevance of these findings to Wallach rearrangement studies is discussed.



1972 ◽  
Vol 50 (20) ◽  
pp. 3283-3287 ◽  
Author(s):  
T. T. Teng ◽  
F. Lenzi

Values of the Hammett acidity function H0 can be correlated for strong acid solutions up to −H0 values of 3.5 via a Bascombe and Bell type equation:[Formula: see text] taking into account the degree of dissociation of the acids. This can be interpreted according to[Formula: see text]and[Formula: see text]Alternatively, an approach based on the treatment of equilibrium constants in terms of mole-fractions yields[Formula: see text]valid for the same acids (H2SO4, HClO4, HCl, and HNO3) and again involving a tri-dehydration of the tetra-hydrated proton. The log of the ratio [Formula: see text] has been found to be proportional to −H0 itself and to be otherwise independent of the nature of the acid anion.



1960 ◽  
Vol 14 ◽  
pp. 1627-1642 ◽  
Author(s):  
Erik Högfeldt ◽  
Niels Hofman-Bang ◽  
Thor A. Bak ◽  
E. Varde ◽  
Gertrud Westin


Author(s):  
S. G. Sysoeva ◽  
I. S. Kislina ◽  
M. I. Vinnik


2018 ◽  
Vol 21 (8) ◽  
pp. 602-608 ◽  
Author(s):  
Zainab Ehsani-Nasab ◽  
Ali Ezabadi

Aim and Objective: In the present work, 1, 1’-sulfinyldiethylammonium bis (hydrogen sulfate) as a novel room temperature dicationic ionic liquid was synthesized and used as a catalyst for xanthenediones synthesis. Material and Method: The dicationic ionic liquid has been synthesized using ethylamine and thionyl chloride as precursors. Then, by the reaction of [(EtNH2)2SO]Cl2 with H2SO4, [(EtNH2)2SO][HSO4]2 was prepared and after that, it was characterized by FT-IR, 1H NMR, 13C NMR as well as Hammett acidity function. This dicationic ionic liquid was used as a catalyst for the synthesis of xanthenediones via condensation of structurally diverse aldehydes and dimedone under solvent-free conditions. The progress of the reaction was monitored by thin layer chromatography (ethyl acetate/n-hexane = 3/7). Results: An efficient solvent-free method for the synthesis of xanthenediones has been developed in the presence of [(EtNH2)2SO][HSO4]2 as a powerful catalyst with high to excellent yields, and short reaction times. Additionally, recycling studies have demonstrated that the dicationic ionic liquid can be readily recovered and reused at least four times without significant loss of its catalytic activity. Conclusion: This new dicationic ionic liquid can act as a highly efficient catalyst for xanthenediones synthesis under solvent-free conditions.



Sign in / Sign up

Export Citation Format

Share Document