Mesostructured Selenides with Cubic MCM-48 Type Symmetry:  Large Framework Elasticity and Uncommon Resiliency to Strong Acids

2004 ◽  
Vol 126 (47) ◽  
pp. 15326-15327 ◽  
Author(s):  
Pantelis N. Trikalitis ◽  
Nan Ding ◽  
Christos Malliakas ◽  
Simon J. L. Billinge ◽  
Mercouri G. Kanatzidis
Keyword(s):  
2019 ◽  
pp. 110-115
Author(s):  
L. M. Mironovich ◽  
A. Yu. Eliseev ◽  
A. Yu. Eliseeva

The paper studies complex effect of various factors on the process of cleaning brass brand L-68, used for the manufacture of heat exchange equipment. It has been established that acids of various strengths can be used as working solutions. The speed of the cleaning process depends on the nature of the acid and its initial concentration. For strong acids, a working solution with low concentration is recommended, followed by an increase in their concentration during the cleaning process. Additional input of oxygen into the system and an increase of the working solution temperature increase the cleaning rate of brass. The cleaning process proceeds without significant changes in the surface configuration, and, consequently, the expenditure of metal.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1771
Author(s):  
Fei Wang ◽  
Kejiang Liang ◽  
Mads Christian Larsen ◽  
Steffen Bähring ◽  
Masatoshi Ishida ◽  
...  

We report a fully organic pyridine-tetrapyrrolic U-shaped acyclic receptor 10, which prefers a supramolecular pseudo-macrocyclic dimeric structure (10)2 in a less polar, non-coordinating solvent (e.g., CHCl3). Conversely, when it is crystalized from a polar, coordinating solvent (e.g., N,N-dimethylformamide, DMF), it exhibited an infinite supramolecular one-dimensional (1D) “zig-zag” polymeric chain, as inferred from the single-crystal X-ray structures. This supramolecular system acts as a potential receptor for strong acids, e.g., p-toluenesulfonic acid (PTSA), methane sulfonic acid (MSA), H2SO4, HNO3, and HCl, with a prominent colorimetric response from pale yellow to deep red. The receptor can easily be recovered from the organic solution of the host–guest complex by simple aqueous washing. It was observed that relatively stronger acids with pKa < −1.92 in water were able to interact with the receptor, as inferred from 1H NMR titration in tetrahydrofuran-d8 (THF-d8) and ultraviolet–visible (UV–vis) spectroscopic titrations in anhydrous THF at 298 K. Therefore, this new dynamic supramolecular receptor system may have potentiality in materials science research.


Radiocarbon ◽  
2021 ◽  
pp. 1-18
Author(s):  
Rachel Wood ◽  
Andre Barros Curado Fleury ◽  
Stewart Fallon ◽  
Thi Mai Huong Nguyen ◽  
Anh Tuan Nguyen

ABSTRACT In hot environments, collagen, which is normally targeted when radiocarbon (14C) dating bone, rapidly degrades. With little other skeletal material suitable for 14C dating, it can be impossible to obtain dates directly on skeletal materials. A small amount of carbonate occurs in hydroxyapatite, the mineral phase of bone and tooth enamel, and has been used as an alternative to collagen. Unfortunately, the mineral phase is often heavily contaminated with exogenous carbonate causing 14C dates to underestimate the true age of a sample. Although tooth enamel, with its larger, more stable crystals and lower porosity, is likely to be more robust to diagenesis than bone, little work has been undertaken to investigate how exogenous carbonate can be effectively removed prior to 14C dating. Typically, acid is used to dissolve calcite and etch the surface of the enamel, but it is unclear which acid is most effective. This study repeats and extends earlier work using a wider range of samples and acids and chelating agents (hydrochloric, lactic, acetic and propionic acids, and EDTA). We find that weaker acids remove carbonate contaminants more effectively than stronger acids, and acetic acid is the most effective. However, accurate dates cannot always be obtained.


2021 ◽  
pp. oemed-2020-107323
Author(s):  
Irmeli Lindström ◽  
Jussi Lantto ◽  
Kirsi Karvala ◽  
Satu Soini ◽  
Katriina Ylinen ◽  
...  

BackgroundExposures leading to irritant-induced asthma (IIA) are poorly documented.MethodsWe retrospectively screened the medical records of patients with IIA diagnosed in an occupational medicine clinic during 2000–2018. We classified the cases into acute (onset after single exposure) and subacute (onset after multiple exposures) IIA. We analysed in detail, occupations, causative agents and their air levels in the workplace, exposure events and the root causes of high exposure.ResultsAltogether 69 patients were diagnosed with IIA, 30 with acute and 39 with subacute IIA. The most common occupational groups were industrial operators (n=23, 33%), metal and machinery workers (n=16, 11%) and construction workers (n=12, 8%). Among industrial operators significantly more cases had subacute IIA than acute IIA (p=0.002). Forty cases (57%) were attributable to some type of corrosive acidic or alkaline chemical. Acute IIA followed accidents at work in different types of occupation, while subacute IIA was typical among industrial operators performing their normal work tasks under poor work hygiene conditions. The most common root cause was lack of information or false guidance in acute IIA (n=11, 36%) and neglect of workplace hygiene measures in subacute IIA (n=29, 74%).ConclusionsAccidents are the main causes of acute IIA, whereas subacute IIA can develop in normal work in risk trades with poor work hygiene. Airborne strong acids or bases seem to be the most important causative agents of acute and subacute IIA. The different risk profiles of acute and subacute IIA should be considered in the prevention and identification of the cases.


Philosophy ◽  
2020 ◽  
Vol 96 (1) ◽  
pp. 99-131
Author(s):  
Niels de Haan

AbstractThere is good reason to think that moral responsibility as accountability is tied to the violation of moral demands. This lends intuitive support to Type-Symmetry in the collective realm: A type of responsibility entails the violation or unfulfillment of the same type of all-things-considered duty. For example, collective responsibility necessarily entails the violation of a collective duty. But Type-Symmetry is false. In this paper I argue that a non-agential group can be collectively responsible without thereby violating a collective duty. To show this I distinguish between four types of responsibility and duty in collective contexts: corporate, distributed, collective, shared. I set out two cases: one involves a non-reductive collective action that constitutes irreducible wrongdoing, the other involves a non-divisible consequence. I show that the violation of individual or shared duties both can lead to irreducible wrongdoing for which only the group is responsible. Finally, I explain why this conclusion does not upset any work on individual responsibility.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4083
Author(s):  
Heming Jiang ◽  
Tian-Yu Sun

A computational study on the origin of the activating effect for Pd-catalyzed directed C–H activation by the concerted metalation-deprotonation (CMD) mechanism is conducted. DFT calculations indicate that strong acids can make Pd catalysts coordinate with directing groups (DGs) of the substrates more strongly and lower the C–H activation energy barrier. For the CMD mechanism, the electrophilicity of the Pd center and the basicity of the corresponding acid ligand for deprotonating the C–H bond are vital to the overall C–H activation energy barrier. Furthermore, this rule might disclose the role of some additives for C–H activation.


1970 ◽  
Vol 74 (21) ◽  
pp. 3773-3780 ◽  
Author(s):  
Arthur K. Covington ◽  
J. G. Freeman ◽  
T. H. Lilley

1996 ◽  
Vol 61 (8) ◽  
pp. 1205-1214 ◽  
Author(s):  
Miroslav Ludwig ◽  
Pavel Štverka

Ten 4,4'-disubstituted bis(arenesulfon)imides of the general formula XC6H4SO2NHSO2C6H4X have been synthesized and their structures confirmed by their 1H NMR spectra. Elemental analyses are presented for the compounds not yet described. The dissociation constants of these model substances have been measured potentiometrically in pyridine, dimethylformamide, methanol, ethanol, propylene carbonate, acetone, acetonitrile, 1,2-dichloroethane and tetramethylene sulfone. The pKHA values obtained have been correlated with three sets of the Hammett substituent constants and the results have been used to discuss the solvent and substituent effects on the dissociation of the compounds studied. Sulfonimides with electron-acceptor substituents behave as rather strong acids in some solvents (pyridine, dimethylformamide, methanol and ethanol), whereas normal substituent dependences are found in other solvents. The experimental data have also been interpreted with the help of the statistical methods based on latent variables. From the calculations it follows that only the first principal component, which correlates well with the substituent constant sets adopted, is statistically significant in describing the substituent effect on the acid-base process studied.


1959 ◽  
Vol 37 (1) ◽  
pp. 173-177 ◽  
Author(s):  
Martin Kilpatrick

The problem of proton mobility has been considered in H2O–CH3OH, H2O–D2O, and H2O–H2O2 solvents from the current viewpoint of the mechanism of proton mobility for aqueous solutions. Mixed solvents are more complicated in that one must consider the relative basicity and acidity of the species competing for the protons. It is concluded that for dilute solutions of HClO4, where water is replaced by hydrogen peroxide, the decrease in equivalent conductance relative to that of KCl in the same solvent mixture is due to the partial elimination of the proton transfer process.For highly acidic non-aqueous solvents of high dielectric constants such as HF, HCN, and HCOOH, the problem of the weakness of the usual "strong" acids of aqueous solution makes a direct determination of the limiting equivalent conductances difficult. In the case of anhydrous hydrogen fluoride the available experimental evidence indicates that the limiting conductance of the lyonium ion is approximately the same as that of the potassium ion but the lyate ion has a higher limiting conductance than other stable anions.The higher proton mobility in ice leads one to expect that hydrogen-bonded systems may be found where the conductivity may approach that of electronic semiconductors.


Sign in / Sign up

Export Citation Format

Share Document