Direct Measurement of Electron Transfer through a Hydrogen Bond between Single Molecules

2013 ◽  
Vol 135 (12) ◽  
pp. 4592-4595 ◽  
Author(s):  
Tomoaki Nishino ◽  
Nobuhiko Hayashi ◽  
Phuc T. Bui
2020 ◽  
Vol 8 (42) ◽  
pp. 14939-14947
Author(s):  
So Yokomori ◽  
Shun Dekura ◽  
Tomoko Fujino ◽  
Mitsuaki Kawamura ◽  
Taisuke Ozaki ◽  
...  

A novel vapochromic mechanism by intermolecular electron transfer coupled with hydrogen-bond formation was realized in a zinc dithiolene complex crystal.


1989 ◽  
Vol 67 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Donald R. Arnold ◽  
Shelley A. Mines

Alkenes, conjugated with a phenyl group, can be converted to nonconjugated tautomers by sensitized (electron transfer) irradiation. For example, irradiation of an acetonitrile solution of the conjugated alkene 1-phenylpropene, the electron accepting photosensitizer 1,4-dicyanobenzene, the cosensitizer biphenyl, and the base 2,4,6-trimethylpyridine gave the nonconjugated tautomer 3-phenylpropene in good yield. Similarly, 2-methyl-1-phenylpropene gave 2-methyl-3-phenylpropene, and 1-phenyl-1-butene gaveE- and Z-1-phenyl-2-butene. The reaction also works well with cyclic alkenes. For example, 1-phenylcyclohexene gave 3-phenylcyclohexene, and 1-(phenylmethylene)cyclohexane gave 1-(phenylmethyl)cyclohexene. The proposed mechanism involves the initial formation of the alkene radical cation and the sensitizer radical anion, induced by irradiation of the sensitizer and mediated by the cosensitizer. Deprotonation of the radical cation assisted by the base gives the ambident radical, which is then reduced to the anion by the sensitizer radical anion. Protonation of the ambident anion at the benzylic position completes the sequence. Reprotonation at the original position is an energy wasting step. Tautomerization is driven toward the isomer with the higher oxidation potential, which is, in the cases studied, the less thermodynamically stable isomer. The regioselectivity of the deprotonation step is dependent upon the conformation of the allylic carbon–hydrogen bond. The tautomerization of 2-methyl- 1-phenylbutene gave both 2-phenylmethyl-1-butène and 2-methyl-1-phenyl-2-butene (E and Z isomers), while 2,3-dimethyl- 1-phenylbutene gave only 3-methyl-2-phenylmethyl-1 -butene. In the latter case, steric interaction of the methyls on the isopropyl group prevents effective overlap of the tertiary carbon–hydrogen bond with the singly occupied molecular orbital, thus inhibiting deprotonation from this site. Keywords: photosensitized, electron transfer, alkene, tautomerization, radical cation.


2020 ◽  
Vol 49 (41) ◽  
pp. 14598-14604 ◽  
Author(s):  
Ai-Ju Liu ◽  
Yue Han ◽  
Fei Xu ◽  
Song-De Han ◽  
Jie Pan ◽  
...  

The introduction of conjugated dipyridine-derivative units into metal phosphite system produces two hybrid zincophosphites driven by the coordinate bond- and hydrogen bond-assisted electron transfer.


2007 ◽  
Vol 129 (17) ◽  
pp. 5621-5629 ◽  
Author(s):  
Changjian Feng ◽  
Gordon Tollin ◽  
James T. Hazzard ◽  
Nickolas J. Nahm ◽  
J. Guy Guillemette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document