Tackling Solubility Issues in Organic Synthesis: Solid-State Cross-Coupling of Insoluble Aryl Halides

Author(s):  
Tamae Seo ◽  
Naoki Toyoshima ◽  
Koji Kubota ◽  
Hajime Ito
2019 ◽  
Author(s):  
Yu Kawamata ◽  
Julien Vantourout ◽  
David P. Hickey ◽  
Peng Bai ◽  
Longrui Chen ◽  
...  

<div> <div> <div> <p>C–N cross-coupling is one of the most valuable and widespread transformations in organic synthesis. Largely dominated by Pd- and Cu-based catalytic systems, it has proven to be a staple transformation for those in both academia and industry. The current study presents the development and mechanistic understanding of an electrochemically driven, Ni-catalyzed method for achieving this reaction of high strategic importance. Through a series of electrochemical, computational, kinetic, and empirical experiments the key mechanistic features of this reaction have been unraveled, leading to a second generation set of conditions that is applicable to a broad range of aryl halides and amine nucleophiles, including complex examples on oligopeptides, medicinally-relevant heterocycles, natural products, and sugars. Full disclosure of the current limitations as well as procedures for both batch and flow scale-ups (100 gram) are also described. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Yu Kawamata ◽  
Julien Vantourout ◽  
David P. Hickey ◽  
Peng Bai ◽  
Longrui Chen ◽  
...  

<div> <div> <div> <p>C–N cross-coupling is one of the most valuable and widespread transformations in organic synthesis. Largely dominated by Pd- and Cu-based catalytic systems, it has proven to be a staple transformation for those in both academia and industry. The current study presents the development and mechanistic understanding of an electrochemically driven, Ni-catalyzed method for achieving this reaction of high strategic importance. Through a series of electrochemical, computational, kinetic, and empirical experiments the key mechanistic features of this reaction have been unraveled, leading to a second generation set of conditions that is applicable to a broad range of aryl halides and amine nucleophiles, including complex examples on oligopeptides, medicinally-relevant heterocycles, natural products, and sugars. Full disclosure of the current limitations as well as procedures for both batch and flow scale-ups (100 gram) are also described. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Randolph Escobar ◽  
Jeffrey Johannes

<div>While carbon-heteroatom cross coupling reactions have been extensively studied, many methods are specific and</div><div>limited to a set of substrates or functional groups. Reported here is a method that allows for C-O, C-N and C-S cross coupling reactions under one general methodology. We propose that an energy transfer pathway, in which an iridium photosensitizer produces an excited nickel (II) complex, is responsible for the key reductive elimination step that couples aryl halides to 1° and 2° alcohols, anilines, thiophenols, carbamates and sulfonamides.</div>


2013 ◽  
Vol 17 (5) ◽  
pp. 474-490 ◽  
Author(s):  
Amit Kumar Gupta ◽  
Neetu Singh ◽  
Krishna Nand Singh

Author(s):  
Qing He ◽  
Wenli Wang ◽  
Yong Liang ◽  
Zunting Zhang ◽  
Stanislaw F. Wnuk

Compounds ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 58-74
Author(s):  
Emmanuel Aubert ◽  
Emmanuel Wenger ◽  
Paola Peluso ◽  
Victor Mamane

Non-symmetrical chiral 4,4′-bipyridines have recently found interest in organocatalysis and medicinal chemistry. In this regard, the development of efficient methods for their synthesis is highly desirable. Herein, a series of non-symmetrical atropisomeric polyhalogenated 4,4′-bipyridines were prepared and further functionalized by using cross-coupling reactions. The desymmetrization step is based on the N-oxidation of one of the two pyridine rings of the 4,4′-bipyridine skeleton. The main advantage of this methodology is the possible post-functionalization of the pyridine N-oxide, allowing selective introduction of chlorine, bromine or cyano groups in 2- and 2′-postions of the chiral atropisomeric 4,4′-bipyridines. The crystal packing in the solid state of some newly prepared derivatives was analyzed and revealed the importance of halogen bonds in intermolecular interactions.


Synlett ◽  
2021 ◽  
Author(s):  
Ying-Yeung Yeung ◽  
Jonathan Wong

AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook


Sign in / Sign up

Export Citation Format

Share Document