Direct, Catalytic α-Alkylation of N-Heterocycles by Hydroaminoalkylation: Substrate Effects for Regiodivergent Product Formation

Author(s):  
Rebecca C. DiPucchio ◽  
Karst E. Lenzen ◽  
Pargol Daneshmand ◽  
Maria B. Ezhova ◽  
Laurel L. Schafer
1989 ◽  
Vol 61 (03) ◽  
pp. 386-391 ◽  
Author(s):  
Guido Tans ◽  
Truus Janssen-Claessen ◽  
Jan Rosing

SummaryIn this paper we report a method via which enzymatically active products formed during prothrombin activation can be detected by simple photographic means after SDS-gel electrophoresis, blotting onto a nitrocellulose membrane and visualization with the chromogenic substrate, S2238. After amidolytic detection the same nitrocellulose membrane can also be used for immunologic detection of prothrombin activation products, thus allowing a complete description of product formation during prothrombin activation.The detection limit of the so-called “amidoblot” is approximately 3 ng thrombin per gel sample which is comparable to the sensitivity of immunoblotting.It is further shown that the amidoblot technique can also be applied to other coagulation factors for which a suitable chromogenic substrate is available (factor XIIa, kallikrein, factor XIa, factor Xa, plasmin and activated protein C).


1974 ◽  
Vol 76 (1) ◽  
pp. 178-188 ◽  
Author(s):  
H. Lübbert ◽  
K. Pollow ◽  
R. Wagner ◽  
J. Hammerstein

ABSTRACT The effects of ethanol on kinetic parameters of placental Δ5-3β-hydroxysteroid dehydrogenase were studied. In the presence of high pregnenolone concentrations (50 μm, [S] > Km) the microsomal enzyme preparation exhibited an almost linear increase in activity as the ethanol concentration in the medium was raised from 2.5 to 15 % (v/v). At lower substrate concentrations ([S] << Km) ethanol caused inhibition. Other effects of ethanol were: linearity of product formation with time was prolonged; the maximal velocity was markedly increased; the Km for pregnenolone slightly decreased with increasing ethanol concentrations (2.5 to 10 %, v/v) whereas the Km for NAD remained the same. The pH and temperature optima of the reaction were unaffected by ethanol. Other organic solvents caused similar effects.


2018 ◽  
Author(s):  
Yiming Zhao ◽  
Huy van Nguyen ◽  
Louise Male ◽  
Philip Craven ◽  
Benjamin R. Buckley ◽  
...  

<div>Twelve 1,5-disubtituted and fourteen 5-substituted 1,2,3-triazole derivatives bearing diaryl or dialkyl phosphines at the 5-position were synthesised and used as ligands for palladium-catalysed Suzuki-Miyaura cross-coupling reactions. Bulky substrates were tested, and lead-like product formation was demonstrated. The online tool SambVca 2.0 was used to assess steric parameters of ligands and preliminary buried volume determination using XRD obtained data in a small number of cases proved to be informative. Two modelling approaches were compared for the determination of</div><div>the buried volume of ligands where XRD data was not available. An approach with imposed steric restrictions was found to be superior in leading to buried volume determinations that closely correlate with observed reaction conversions. The online tool LLAMA was used to determine lead-likeness of potential Suzuki-Miyaura cross-coupling products, from which ten of the most lead-like were successfully synthesised. Thus, confirming these readily accessible triazole-containing phosphines as highly suitable ligands for reaction screening and optimisation in drug discovery campaigns.</div>


2019 ◽  
Author(s):  
Tristan Delcaillau ◽  
Alessandro Bismuto ◽  
Zhong Lian ◽  
Bill Morandi

A nickel-catalyzed carbon-sulfur bond metathesis has been developed to access high-value thioethers. 1,2-bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional group tolerant reaction. Further, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis which does not involve alkene bonds. In-depth organometallic studies support a reversible Ni(0)-Ni(II) pathway to product formation. Overall, this work does not only disclose a more sustainable and more functional group tolerant alternative to previous catalytic systems based on Pd, but also presents new applications and mechanistic information which are highly relevant to the further development and application of unusual single bond metathesis reactions.


Sign in / Sign up

Export Citation Format

Share Document