scholarly journals Deoxyribonucleic Acid Encoded and Size-Defined π-Stacking of Perylene Diimides

Author(s):  
Jeffrey Gorman ◽  
Sarah R. E. Orsborne ◽  
Akshay Sridhar ◽  
Raj Pandya ◽  
Peter Budden ◽  
...  
2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2020 ◽  
Author(s):  
Abhishek Singh ◽  
Reman K. Singh ◽  
G Naresh Patwari

The rational design of conformationally controlled foldable modules can lead to a deeper insight into the conformational space of complex biological molecules where non-covalent interactions such as hydrogen bonding and π-stacking are known to play a pivotal role. Squaramides are known to have excellent hydrogen bonding capabilities and hence, are ideal molecules for designing foldable modules that can mimic the secondary structures of bio-molecules. The π-stacking induced folding of bis-squaraines tethered using aliphatic primary and secondary-diamine linkers of varying length is explored with a simple strategy of invoking small perturbations involving the length linkers and degree of substitution. Solution phase NMR investigations in combination with molecular dynamics simulations suggest that bis-squaraines predominantly exist as extended conformations. Structures elucidated by X-ray crystallography confirmed a variety of folded and extended secondary conformations including hairpin turns and 𝛽-sheets which are determined by the hierarchy of π-stacking relative to N–H···O hydrogen bonds.


2019 ◽  
Author(s):  
KAIKAI MA ◽  
Peng Li ◽  
John Xin ◽  
Yongwei Chen ◽  
Zhijie Chen ◽  
...  

Creating crystalline porous materials with large pores is typically challenging due to undesired interpen-etration, staggered stacking, or weakened framework stability. Here, we report a pore size expansion strategy by self-recognizing π-π stacking interactions in a series of two-dimensional (2D) hydrogen–bonded organic frameworks (HOFs), HOF-10x (x=0,1,2), self-assembled from pyrene-based tectons with systematic elongation of π-conjugated molecular arms. This strategy successfully avoids interpene-tration or staggered stacking and expands the pore size of HOF materials to access mesoporous HOF-102, which features a surface area of ~ 2,500 m2/g and the largest pore volume (1.3 cm3/g) to date among all reported HOFs. More importantly, HOF-102 shows significantly enhanced thermal and chemical stability as evidenced by powder x-ray diffraction and N2 isotherms after treatments in chal-lenging conditions. Such stability enables the adsorption of dyes and cytochrome c from aqueous media by HOF-102 and affords a processible HOF-102/fiber composite for the efficient photochemical detox-ification of a mustard gas simulant.


2011 ◽  
Vol 3 (1) ◽  
Author(s):  
Lies Indah Sutiknowati

There is an information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spill. We have Bioremediation treatment for degradation of oil spill on Pari island and need two kind of experiment there are tanks experiment (sampling 0 to 90 days) and semi enclosed system (sampling 0 to 150 days). Biostimulation with nutrients (N and P) was done to analyze biodegradation of hydrocarbon compounds. Experiment design using fertilizer Super IB and Linstar will stimulate bacteria can degrade oil, n-alkane, and alkane as poly aromatic hydrocarbon. The bacteria communities were monitored and analyzed by Denaturing Gradient Gel Electrophoresis (DGGE) and Clone Library; oil chemistry was analyzed by Gas Chromatography Mass Spectrometry (GCMS). DNA (deoxyribonucleic acid) was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers U515f and U1492r. Strains had been sequence and had similarity about 90-99% to their closest taxa by homology Blast search and few of them suspected as new species. The results showed that fertilizers gave a significant effect on alkane, PAH and oil degradation in tanks experiment but not in the field test. Dominant of the specific bacteria on this experiment were Alcanivorax, Marinobacter and Prosthecochloris. Keywords: Bioremediation, Biostimulation, DGGE, PAH, Pari Island


2019 ◽  
Vol 15 (4) ◽  
pp. 318-333
Author(s):  
Dipak P. Mali ◽  
Neela M. Bhatia

Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.


Sign in / Sign up

Export Citation Format

Share Document