scholarly journals Reversible and Selective Interconversion of Hydrogen and Carbon Dioxide into Formate by a Semiartificial Formate Hydrogenlyase Mimic

2019 ◽  
Vol 141 (44) ◽  
pp. 17498-17502 ◽  
Author(s):  
Katarzyna P. Sokol ◽  
William E. Robinson ◽  
Ana R. Oliveira ◽  
Sonia Zacarias ◽  
Chong-Yong Lee ◽  
...  
Author(s):  
Magali Roger ◽  
Thomas C. P. Reed ◽  
Frank Sargent

Escherichia coli is gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesises formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate in to H 2 and CO 2 . However, the enzyme has been observed to catalyse hydrogenation of CO 2 given the correct conditions, and so has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO 2 -reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H 2 and CO 2 during bacterial growth in a pressurised batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurised gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here we present out latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurised H 2 and CO 2 gases was established and aqueous formic acid was produced as a result. Incorporation of tungsten in to the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO 2 reductase (HDCR).


Author(s):  
K. C. Tsou ◽  
J. Morris ◽  
P. Shawaluk ◽  
B. Stuck ◽  
E. Beatrice

While much is known regarding the effect of lasers on the retina, little study has been done on the effect of lasers on cornea, because of the limitation of the size of the material. Using a combination of electron microscope and several newly developed cytochemical methods, the effect of laser can now be studied on eye for the purpose of correlating functional and morphological damage. The present paper illustrates such study with CO2 laser on Rhesus monkey.


Author(s):  
Charles TurnbiLL ◽  
Delbert E. Philpott

The advent of the scanning electron microscope (SCEM) has renewed interest in preparing specimens by avoiding the forces of surface tension. The present method of freeze drying by Boyde and Barger (1969) and Small and Marszalek (1969) does prevent surface tension but ice crystal formation and time required for pumping out the specimen to dryness has discouraged us. We believe an attractive alternative to freeze drying is the critical point method originated by Anderson (1951; for electron microscopy. He avoided surface tension effects during drying by first exchanging the specimen water with alcohol, amy L acetate and then with carbon dioxide. He then selected a specific temperature (36.5°C) and pressure (72 Atm.) at which carbon dioxide would pass from the liquid to the gaseous phase without the effect of surface tension This combination of temperature and, pressure is known as the "critical point" of the Liquid.


2001 ◽  
Vol 7 (7) ◽  
pp. 789-796 ◽  
Author(s):  
L. H. Ziska ◽  
O. Ghannoum ◽  
J. T. Baker ◽  
J. Conroy ◽  
J. A. Bunce ◽  
...  

2007 ◽  
Vol 177 (4S) ◽  
pp. 319-319
Author(s):  
Naoto Sassa ◽  
Ryohei Hattori ◽  
Yoshinari Ono ◽  
Tokunori Yamamoto ◽  
Momokazu Gotoh

Sign in / Sign up

Export Citation Format

Share Document