Extraction of Free Fatty Acids from Peanut Oil and Avocado Seed Oil: Liquid−Liquid Equilibrium Data at 298.2 K

2008 ◽  
Vol 53 (8) ◽  
pp. 1698-1704 ◽  
Author(s):  
Christianne E. C. Rodrigues ◽  
Antonio J. A. Meirelles
2020 ◽  
Vol 71 (3) ◽  
pp. 367
Author(s):  
A. Al-Farga ◽  
M. Baeshen ◽  
F. M. Aqlan ◽  
A. Siddeeg ◽  
M. Afifi ◽  
...  

This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.


2016 ◽  
Vol 5 (1) ◽  
pp. 34-39 ◽  
Author(s):  
Atikah Risyad ◽  
Resi Levi Permadani ◽  
Siswarni MZ

Avocado production is quite high in Indonesia led to increased waste avocado seed. Avocado seeds have an oil content large enough to potentially be used as a source of vegetable oil. A commonly used solvent for the extraction process is hexane. However, hexane proved to have an alarming danger if it is used for the extraction of food ingredients, necessitating alternative solvents such as n-heptane. This study was conducted to evaluate the effect of variable research on avocado seed oil extraction using n-heptane. The method used in this study is Response Surface Methodology-Central Composite Design (RSM-CCD) by varying the time of extraction, extraction temperature, avocado seed mass and volume of the solvent n-heptane. ANOVA with 95% confidence level (p <0.05) showed that the variables have a significant influence on the yield of avocado seed oil produced by the value of R2 = 94.24% at constant temperature and R2 = 93.95% at constant time. Characteristics of avocado seed oil is a orange color, density amounted to 0.71 g/ml, viscosity amounted to 0.43 cP, and FFA amounted to 2.76%. Analysis of fatty acid composition of avocado seed oil showed fatty acid component is predominantly polyunsaturated fatty acids as linoleic acid of 47.3531% (w/w), saturated fatty acids such as palmitic acid amounted to 20.3439% (w/w), and monounsaturated fatty acids as oleic acid amounted to 15.8823% (w/w).


1989 ◽  
Vol 44 (9-10) ◽  
pp. 739-742 ◽  
Author(s):  
Heidrun Dresen ◽  
R. B. N. Prasad ◽  
Paul-Gerhard Gülz

Abstract The lipid composition of Piqui (Caryocar coriaceum) seed oil and pulp oil was analyzed and found to contain triacylglycerols (95.1/95.3%) as major components followed by free fatty acids (1.7/1.6%), diacylglycerols (1.6/1.5%), squalene (0.3/0.3%) and monoacylglycerols (0.1/0.1%). Phospholipids were found only in seed oil (0.2%). They were identified as phosphatidylethanolamine and phosphatidylinositol. The sterol fraction (0.1/0.1%) contained stigmasterol and β-sito-sterol. In seed oil triacylglycerols the C-53 molecular species were dominated (52.8%) follow ed by C-55 (37.7%), C-57 (6.9%) and C-51 (2.6%) in minor quantities. In pulp oil triacylglycerols C-55 (51.7%) was predominant followed by C-53 (30.6%) and C-57 (17.7%). Palmitic (16:0) and oleic (18:1) acids were always the major fatty acids in both oils. In seed oil their quantities were nearly the same, whereas in pulp oil oleic acid was predominant. Composition of Lipids of Piqui (Caryocar coriaceum Wittm.)


Fuel ◽  
2006 ◽  
Vol 85 (17-18) ◽  
pp. 2671-2675 ◽  
Author(s):  
V VELJKOVIC ◽  
S LAKICEVIC ◽  
O STAMENKOVIC ◽  
Z TODOROVIC ◽  
M LAZIC

Author(s):  
Eman H. Ahmed ◽  
Azhari H. Nour ◽  
Omer A. Omer Ishag ◽  
Abdurahman H. Nour

The need of energy never comes to an end so; the challenge is to procure power source sufficient to offer for our energy needs. Besides, this energy source must be dependable, renewable, recurring and non-contributing to climate change. Aims: This study was aimed to produce biodiesel from Roselle seed oil and to investigate its quality.  Methodology: The Roselle seeds were clean from dirt, milled to proper size and the oil was extracted using soxhlet with n-hexane as solvent. The extracted oil was subjected to physiochemical analysis tests and then transesterified using methanol and potassium hydroxide as catalyst; with ratio of oil to alcohol 1:8 at 65°C. The quality of produced biodiesel was investigated and compared to international standards. The fatty acid composition of the produced biodiesel was determined by GC-MS. Results: Based on the experimental results, the yellow with characteristic odor oil was obtained from the seeds had the following physicochemical properties: yield, 12.65%; refractive index (25°C), 1.467 m ; free fatty acids, 5.5%; saponification value, 252 mg KOH/g of oil; density, 0.915 g/mL and ester value, 241 mgKOH/g. Also the biodiesel yield achieved was 96%, with density, 0.80 g/mL; API, 44.63; Kinematics viscosity @ 40˚C, 0.742; Pour point, < -51˚C; and Micro Carbon Residual (MCR), 0.65%; which conformed to the range of ASTM D6751 and EN 14214 standard specifications. However, the GC-MS analysis result revealed that the biodiesel produced was methyl ester and free other undesired products such as linoleic acid (33%), elaidic acid (29%) and palmitic acid (17%) and other biomolecules. Conclusion: Based on the obtained results, Roselle seed oil had potential for biodiesel production due to its high contains of free fatty acids. Therefore, in the future, more investigations in alcohol: oil ratio and the concentration of catalyst may be warranted to increase the yield much more.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Baruc Zavala-Guerrero ◽  
Alejandra Hernández-García ◽  
Rafael Torres-Martínez ◽  
Esperanza Meléndez-Herrera ◽  
Patricia Ríos-Chávez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document