scholarly journals Chemical composition, oxidative stability, and sensory properties of Boerhavia elegana Choisy (alhydwan) seed oil/peanut oil blends

2020 ◽  
Vol 71 (3) ◽  
pp. 367
Author(s):  
A. Al-Farga ◽  
M. Baeshen ◽  
F. M. Aqlan ◽  
A. Siddeeg ◽  
M. Afifi ◽  
...  

This study investigated the effects of blending alhydwan seed oil and peanut oil as a way of enhancing the stability and chemical characteristics of plant seed oils and to discover more innovative foods of high nutraceutical value which can be used in other food production systems. Alhydwan seed oil and peanut oil blended at proportions of 10:90, 20:80, 30:70, 40:60 and 50:50 (v/v) were evaluated according to their physi­cochemical properties, including refractive index, relative density, saponification value, peroxide value, iodine value, free fatty acids, oxidative stability index, and tocopherol contents using various standard and published methods. At room temperature, all of the oil blends were in the liquid state. The physicochemical profiles of the blended oils showed significant decreases (p < 0.05) in peroxide value (6.97–6.02 meq O2/kg oil), refractive index at 25 °C (1.462–1.446), free fatty acids (2.29–1.71%), and saponification value (186.44–183.77 mg KOH/g), and increases in iodine value and relative density at 25 °C (98.10–102.89 and 0.89–0.91, respectively), especially with an analhydwan seed oil to peanut oil ratio of 10:90. Among the fatty acids, oleic and linoleic acids were most abundant in the 50:50 and 10:90 alhydwan seed oil to peanut oil blends, respectively. Oxidative stability increased as the proportion of alhydwan oil increased. In terms of tocopherol contents (γ, δ, and α), γ-tocopherol had the highest values across all of the blended proportions, followed by δ-tocopherol. The overall acceptability was good for all blends. The incorporation of alhydwan seed oil into peanut oil resulted in inexpensive, high-quality blended oil that may be useful in health food products and pharmaceuticals without compromising sensory characteristics.

2016 ◽  
Vol 3 (3) ◽  
pp. 293-297
Author(s):  
A. A. Warra

Oil was extracted from the seed of Cassia sieberiana Lusing soxhlet apparatus. The oil yield was 9.26±0.01% and the colour of the seed oil was dark yellow. The results of the physico-chemical analysis revealed the following; acid value, iodine value, saponification value, peroxide value, relative density and refractive index of 0.35±0.01 mgKOH/g , 135.60 ±0.10 gI2/100g, 235.62 ±0.01 mgKOH/g, 1.8 ±0.10meq H2O2 , 0.8185±0.00 (g/cm3) and 1.4415 ±5.77 respectively indicating the suitability of the seed oil for pharmaceutical and cosmetic applications.


2021 ◽  
Vol 13 (1) ◽  
pp. 96-104
Author(s):  
Jelili Babatunde Hussein ◽  
Joseph Idowu Olaniyi ◽  
Esther Anjikwi Msheliza ◽  
Seember Bernadette Kave

The partial substitution of margarine with mature avocado pear pulp in the production of cookies was investigated. Five cookie samples were produced with avocado pear pulp and margarine blends in the ratios 80:20%, 70:30%, 60:40%, 50:50%, and 100% margarine serve as the control, labeled as B, C, D and E and A, respectively while the other ingredients used remain constant. The physico-chemical (proximate compositions, free fatty acids (FFA), iodine value, and peroxide value) and sensory qualities of the cookies were evaluated using standard methods. The results show ranged in moisture (11.13 to 14.60%), crude protein (6.93 to 7.83%), crude fat (16.00 to 18.03%), ash (1.40 to 2.09%), crude fiber (0.29 to 0.62%), carbohydrate (59.70 to 62.79%), FFA (0.35 to 1.01 mg KOH/g), iodine value (75.63 to 81.17 g I2/100 g) and peroxide value (2.96 to 5.27 meq/kg). The partial substitution of margarine with avocado pear pulp produced nutritious cookies with desirable organoleptic qualities. Also, the results demonstrated that cookies had acceptability up to a 30% level of substitution with avocado pear pulp. The findings indicated the feasibility of avocado pear pulp in fat-reduced cookies preparation, this will reduce the pressure in using only margarine in cookies making and diversify the use of avocado pear.


2020 ◽  
pp. 108201322095673
Author(s):  
M Al-Bachir ◽  
Y Koudsi

This research work was undertaken to evaluate the physicochemical parameters of oil from the cherry kernel non-irradiated and irradiated at 3 and 6 kGy of gamma irradiation for two storage periods (0 and 12 months). The acid value, peroxide value, thiobarbituric acid reactive substances value, iodine value, saponification value refractive index (peroxide value), and the color parameters of cherry kernel oils were determined. The results indicated that the extracted cherry kernel oils were liquid at room temperature with color varying from light yellow to deep red. The physicochemical properties of cherry kernel oils including acid value, peroxide value, thiobarbituric acid reactive substances, iodine value, saponification value, and refractive index values were 1.19 mg KOH g−1, 9.01 meq2 kg−1, 0.014 mg MDA kg−1, 99.48 KOH g−1 I2 100 g−1, 194.50 mg KOH g−1, and 1.472, respectively. Generally, gamma irradiation doses and storage time increased acid value, peroxide value, thiobarbituric acid reactive substances, and refractive index value of cherry kernel oils, whereas no significant (p > 0.05) change due to irradiation was recorded in iodine value, saponification value, and in color parameter (L*, a*, b*, and ΔE values) of cherry kernel oils. However, the properties of cherry kernel oils revealed that the cherry kernel is a good source of oil which could be used for industrial purposes.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Rosana Chirinos ◽  
Daniela Zorrilla ◽  
Ana Aguilar-Galvez ◽  
Romina Pedreschi ◽  
David Campos

The effect of roasting ofPlukenetia huayllabambanaseeds on the fatty acids, tocopherols, phytosterols, and phenolic compounds was evaluated. Additionally, the oxidative stability of the seed during roasting was evaluated through free fatty acids, peroxide, andp-anisidine values in the seed oil. Roasting conditions corresponded to 100, 120, 140, and 160°C for 10, 20, and 30 min, respectively. Results indicate that roasting temperatures higher than 120°C significantly affect the content of the studied components. The values of acidity, peroxide, andp-anisidine in the sacha inchi oil from roasted seeds increased during roasting. The treatment of 100°C for 10 min successfully maintained the evaluated bioactive compounds in the seed and quality of the oil, while guaranteeing a higher extraction yield. Our results indicate thatP. huayllabambanaseed should be roasted at temperatures not higher than 100°C for 10 min to obtain snacks with high levels of bioactive compounds and with high oxidative stability.


Author(s):  
Otache Monday Abel ◽  
Amagbor Stella Chinelo ◽  
Inweh Cynthia ◽  
Godwin Kparobo Agbajor

Aims: Evaluate possible application of African Star Apple seed oil as industrial raw material geared towards possible conversion of waste to wealth with no negative impact as it borders on food scarcity. Also unveiling the possibility of a sustainable environment via the eradication of waste from the environment, thereby creating a clean environment. Place and Duration of Study: Fresh ripped fruits of African Star Apple were bought from some local market sellers at Agbarha-Otor market which is located in Ughelli North Local Government Area of Delta State, Nigeria on longitude 6° 2' 54" E /5° 30' 40" N, between November, 2019 and March, 2020. Experimental Details: Soxhlet extraction with n-hexane as solvent was used for the oil extraction of 100 g per batch of extraction. Pretreatment procedure of oil was done prior to transesterification. Homogenous base-catalyzed transesterification reaction was used in this study under controlled experimental conditions such as temperature, reaction time, methanol to oil molar ratio and catalyst type and concentration were examined under varied ranges to ascertain optimum experimental conditions for the reaction. Extracted seeds oil were analysed for its physicochemical properties using standard methods via: specific gravity, acid value, refractive index, saponification value, iodine value and free fatty acid using standard methods. Results: The results showed an oil yield of 14.9%, an indication that the seed reflects a poor source of abundant oil. Results obtained for the physiochemical properties, revealed that; specific gravity, refractive index, saponification value, acid value, free fatty acid and iodine value showed values of 0.896 kg/m3, 1.549, 231.32 mgKOH/g, 3.23 mgKOH/g, 2.07% and 47.63 mg/100 g respectively. Also, results for Methanol: Oil ratio showed that maximum yield was obtained at 6:1 molar ratio. Maximum conversion efficiency for molar concentration was achieved at 0.75% for both catalysts. While a reaction time of 125 min projected better yield. Conclusion: The seed of African star fruit are discarded as waste, therefore its use as a source of oil for industrial feedstock and other domestic application, poses no challenge with regards to food security. Its non-drying potential based on its low iodine value, makes it suitable lubricating oil for industrial application. Similarly, potential application of the oil as feedstock for the production of biodiesel is justified on the basis of its low acid value. Conclusively, the seeds may not have sufficient oil volume potential to be used as edible (domestic) and industrial oil. Consequently upon its low yield, application for biofuel production in commercial scale becomes unrealistic.


2012 ◽  
Vol 12 (54) ◽  
pp. 6715-6736
Author(s):  
R Akinoso ◽  
◽  
IU Ekaette ◽  

Edible oils are widely utilized in diets as a major source of fat and a heat transfer medium during frying . Improvement on nutritive value is a major concern in edible oil industry. Therefore, objectives of this work were to investigate the effects of sweet pepper ( Capsicum annuum ) and tomato fruit ( Lycopersicon esculentum. ) as additives on some physical and functional properties, nutritive values and stability of peanut ( Arachis hypogaea ) oil. Response surface methodology was employed to study effect of natural additives on peanut oil. The variables were additives ratio (5:0, 3:2, 2.5:2.5, 2:3, 0:5) of sweet pepper: tomato and incubation time (1, 1.5, 2.5, 4, 6 hrs). While the responses were oil iodine value, peroxide value, free fatty acid, saponification value, colour, viscosity, beta- carotene, vitamin E and vitamin K. The calculated means for iodine value, peroxide value, free fatty acid, saponification value, colour, viscosity, β -carotene, vitamin E and vitamin K were 105.39 ± 10.38 Wijs, 9.89 ± 2.81 m Eq kg -1 , 2.4 ± 1.13%, 166.1 ± 20.53 mgKOH/g, 0.16 ± 0.2 A, 0.02 ± 0.00 Nsm -2 , 788.3 ± 69.50 μg/100g, 12.7 ± 0.87μg/100g and 7.8 ± 0.59 μg/100g , respectively. Coefficient of determination (R 2 ) of models for iodine value, peroxide value, free fatty acid, colour, viscosity, β -carotene and vitamin E were 0.76, 0.91, 0.76, 0.89, 0.93, 0.97 and 0.84, respectively. Functional properties of the oil including iodine value and saponification value reacted differently to treatment. Iodine value was significantly (p<0.05) influenced while non- significant (p>0.05) effect was recorded for the saponification value. The treatments significantly (p<0.05) influence peroxide value and free fatty acid of the extracted oil. Physical properties of the peanut oil measured by colour and viscosity were significantly influenced by the treatment (p<0.05) . Nutritive values of the peanut oil which were beta -carotene and Vitamin E were significantly (p<0.05) influenced by the treatments but Vitamin K was not significantly influenced.


2021 ◽  
Vol 2 (3) ◽  
pp. 21-26
Author(s):  
Clement Komu ◽  
Monica Mburu ◽  
Daniel Njoroge ◽  
Richard Koskei

The chia seed samples were purchased from farmers in five locations in three agro-ecological zones in Kenya. The oil was obtained by cold pressing and physicochemical properties were determined; the fatty acid profile was determined by Gas chromatography. The mean oil yield from pressing was 16%, the refractive index of chia seed oil at 25 °C ranged from 1.4811 to 1.4832, specific gravity ranged from 0.9616 to 0.9629, acidity index and free fatty acids content ranged from 0.0345-0.0808 mg KOH/g oil, and 0.1736-0.4061%, respectively. The matter in volatiles ranged from 0.047-0.086%. The saponification value ranged from 162.1969–183.3791 milligrams (mg) of potassium hydroxide (KOH) per gram (g) of chia seed oil. The differences in refractive index, acidity index, free fatty acids, specific gravity, and saponification value, were statistically significant at (P<0.05). The α-linolenic (C18:3) and linoleic acids (C18:2) were the dominant fatty acids in chia seed oil and they varied with regions. The levels α-linolenic (C18:3) and linoleic acids (C18:2) ranged from 53.32-64.04% and 19.37-22.87%, respectively. The levels of oleic, linoleic, and linolenic fatty acids in chia seed oils from different regions were statistically significant at (P<0.05). The study recommended the cultivation of chia seed in agro-ecological zones II and III where higher yields and higher content of linoleic and linolenic fatty acids were reported, consumption of chia seed oil as edible oil, and substitution of marine oils with chia oil as potential sources of polyunsaturated fatty acids.


2017 ◽  
Vol 7 (2) ◽  
pp. 111-115
Author(s):  
Sahrial Sahrial ◽  
Emanauli Emanauli ◽  
Meri Arisandi

Tea (Camellia sinensis) is widely grown for its leave sand is commercialized as black tea. Product diversification and value addition are currently are of great interest. This study provides data on the physicochemical properties of tea seed oil from Kayu Aro, Jambi Province. Extraction using-hexane was employed to obtain tea seed oil followed by physical-chemical analysis to assess its properties. Physicochemical properties, namely oil yield, density, refractive index, viscosity, turbidity, color, and melting point, as well as free fatty acid, iodine value, peroxide value, and saponification were determined. The oil yield is up to 14% (dB), density is 882.5±5.5kg/m3, refractive index is 1.48±0.20, viscosity is 64.1±0.2 Pa.s, turbidity is 0.88, color 47.0 (L),34.6 (C) and 95.3 (h) as well as free fatty acid 0.39-0.92%, iodine value 29.63-30.87gI2/100g, peroxide value 0.019-0.417 meq O2/100g, and saponification 127.721-168.382. Tea seed oil is stable and can be a potential source of edible and non-edible applications, such as natural nutraceutical,  pharmaceutical, and cosmetic products


Author(s):  
Melisa Ahmetović ◽  
Edisa Trumić ◽  
Jasna Bajraktarević ◽  
Husejin Keran ◽  
Indira Šestan

From ancient times the natural plant Cornelian cherry is used for various purposes. The healing properties of Cornelian cherry suit the human body and give it the necessary vitamins, acids, and everything else it needs for the body to function normally and healthily. Due to its antioxidant, antiallergic, antimicrobial, and antihistamine properties, it is increasingly used as a dietary supplement, as well as for medical and pharmaceutical purposes. In addition to the fruit of the Cornelian cherry, in the past, the oil of Cornelian cherry seeds was used, the content of which can be up to 30%. However, the data available in the literature are scanty and do not show true values because the oil content depends on many factors, such as the geographical origin of the Cornelian cherry, the harvest period, varieties, etc., which also affects the oil content in the seeds. Therefore, the aim of this study is to determine the average oil content of Cornelian cherry seeds, and to determine the obtained oil physico-chemical parameters that show the quality of the oil, namely oil viscosity, iodine value, peroxide value, acid value, and saponification value. Based on the obtained results, more information is clearly given about the quality of the obtained oil, as well as its use in the production of cosmetic preparations. Based on the conducted analyzes, it was shown that the oil obtained from the Cornelian cherry seeds was high quality, and that it was analyzed in its fatty acid composition similar to other vegetable oils such as sunflower oil, pumpkin oil, corn oil. The low of the peroxide value showed that the oil used has good resistance to oxidative spoilage, which is attributed to the composition of fatty acids and the presence of oil components that have a pronounced antioxidant effect, while the iodine value indicates that it is oil rich in saturated fatty acids such as palmitic, stearic and arachid, etc. where genotype plays an important role. The saponification value showed that these are fatty acids present in the triacylglycerols of this oil, which are low molecular weight, ie there are fewer of those with a larger number of C atoms. All obtained values ​​of the analyzed physical and chemical parameters are in accordance with the requirements imposed by the Regulations on edible vegetable oils (Official Gazette of the Federation Bosnia and Herzegovina No.21/11.), and as such can be used for cosmetic purposes.


Sign in / Sign up

Export Citation Format

Share Document