Hepatic Gene Expression of the Insulin Signaling Pathway Is Altered by Administration of Persimmon Peel Extract: A DNA Microarray Study Using Type 2 Diabetic Goto-Kakizaki Rats

2011 ◽  
Vol 59 (7) ◽  
pp. 3320-3329 ◽  
Author(s):  
Ryoichi Izuchi ◽  
Yuji Nakai ◽  
Hidehito Takahashi ◽  
Shota Ushiama ◽  
Shinji Okada ◽  
...  
Nutrition ◽  
2015 ◽  
Vol 31 (5) ◽  
pp. 733-739 ◽  
Author(s):  
Ze-Qiang Ren ◽  
Peng-Bo Zhang ◽  
Xiu-Zhong Zhang ◽  
Shou-Kun Chen ◽  
Hong Zhang ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 413-413
Author(s):  
Alicia Chang ◽  
Yankai Zhang ◽  
Nelda Itzep ◽  
Vivien A Sheehan

Abstract Background: Fetal hemoglobin (HbF, α2g2) induction has long been an area of investigation, as it is known to reduce the clinical complications of sickle cell disease (SCD) and beta thalassemia. Progress in identifying novel HbF inducing strategies has been stymied by an incomplete understanding of gamma-globin regulation. We used natural genetic variation to identify novel genes and pathways associated with HbF levels in patients with SCD. Our whole exome sequencing analysis of 1290 samples from patients with SCD identified the insulin signaling pathway to be related to HbF regulation. Functional studies performed in hematopoietic stem and progenitor cells (HSPCs) from patients with SCD established that FOXO3 is a positive regulator of HbF, and that metformin, a FOXO3 and AMPK activator, can induce HbF (Zhang et al, Blood 2018). We hypothesized that other proteins in the insulin signaling pathway, particularly AMPK, a direct activator of FOXO3, may contribute to HbF regulation and be a potential target for pharmacologic induction of HbF. Objectives: We now seek to determine the role of AMPK and AMPK activators such as piceatannol in HbF regulation through functional studies in HSPCs from patients with SCD. Methods: HSPCs from 3 unique patients with SCD were transduced with AMPK shRNA on day 5 of two phase primary erythroid culture. AMPK, FOXO3, gamma and beta globin gene expression were measured by RT-qPCR and HbF by HPLC respectively on day 14 of culture. HSPCs from 3 unique patients with SCD were treated with AICAR, piceatannol at 12.5µM and metformin at 100 µM on day 7 of erythroid culture. Cell lysate was collected on day 14, and AMPK, FOXO3, gamma and beta globin gene expression and protein levels measured by RT-qPCR and western blot respectively. Levels of pAMPK, at Thr172, were quantified by western blot. 1 µM Compound C was added with piceatannol and with metformin in separate erythroid cultures on day 7, and the effect on gamma globin and phosphorylation of AMPK at Thr172 was measured on day 14 by RT-qPCR and western blot respectively. Results: 70% knockdown of AMPK resulted in a 50% decrease in HbF (p<0.01) and a three-fold reduction in gamma-globin expression (p<0.001). HSPCs treated with metformin or piceatannol exhibited a 2-3 fold rise in AMPK, FOXO3 and gamma globin gene expression (p<0.001). HSPCs treated with piceatannol and metformin showed an increase in pAMPK at Thr172, the activated form of AMPK. In the presence of a specific AMPK inhibitor, Compound C, metformin and piceatannol, no induction of gamma globin was observed (Figure 1), and pAMPK was reduced to untreated levels. Conclusions: Knockdown of AMPK in HSPCs reduces gamma globin expression and %HbF, supporting the role of AMPK in gamma globin regulation. Drugs known to activate AMPK, metformin and piceatannol, increase gamma globin in SCD patient derived HSPCs. Pharmacologic blockage of AMPK activity with Compound C results in reduction of HbF induction, and reduces the gamma globin induction of metformin and piceatannol to untreated levels. We therefore conclude that AMPK is a positive regulator of HbF, and that pharmacologic induction of HbF with metformin and piceatannol requires AMPK activity. Further work is needed to establish if FOXO3 and AMPK alone are instrumental in HbF regulation, or if other proteins in the insulin signaling pathway may play a role in HbF regulation. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 50 (Supplement_1) ◽  
Author(s):  
Yu-xiang Yan ◽  
Ya-Ke Lu ◽  
Xi Chu ◽  
Yue Sun ◽  
Jing Dong

Abstract Background The underlying molecular mechanism of type 2 diabetes (T2D) and insulin resistance is that abnormalities occur in the complex insulin signaling pathway. Circular RNAs (circRNAs) are involved in the development of diseases by regulating gene expression and become promising novel biomarkers for diseases. This study screened and validated the insulin signaling pathway-related circulating circRNAs, which are associated with T2D. Methods Based on circRNA microarray, candidate circRNAs involved in the insulin PI3K/Akt signaling pathway were selected and validated by RT-qPCR. The association between circRNAs and T2D and their clinical significance were further assessed by logistic regression model, correlation analysis and ROC curve in a large cohort. The miRNA targets of validated circRNAs was verified by dual-luciferase reporter assay. Results A total of 370 upregulated circRNAs and 180 downregulated circRNAs were differentially expressed between new T2D cases and controls. hsa_circ_0063425, hsa_circ_0056891 and hsa_circ_0104123 were selected as candidate circRNAs for validation. Low expressed circ_0063425 and hsa_circ_0056891 were independent predictors of T2D, impaired fasting glucose (IFG) and insulin resistance. The two-circRNA panel had a high diagnostic accuracy for discriminating T2D and IFG from healthy controls. miR-19a-3p and miR-1-3p were identified as the miRNA targets of hsa_circ_0063425 and hsa_circ_0056891, respectively. Significantly positive correlations were found between the expression levels of AKT and hsa_circ_0063425, PI3K and hsa_circ_0056891, in the total sample and subgroups stratified by glucose levels. Conclusion hsa_circ_0063425 and hsa_circ_0056891 are valuable circulating biomarkers for early detection of T2D, which may be involved in regulation of PI3K/AKT signaling. Key messages Insulin signaling pathway-related circulating circRNAs was identification as novel biomarkers of type 2 diabetes. Keywords circRNA; type 2 diabetes; insulin signaling; biomarker.


Medicina ◽  
2018 ◽  
Vol 55 (1) ◽  
pp. 3 ◽  
Author(s):  
Gökhan Sadi ◽  
Gamze Şahin ◽  
Aykut Bostanci

Background and objectives: Diabetes mellitus is a disease of insulin deficiency or its inability of usage by the target tissues leading to impairment of carbohydrate, lipid, and protein metabolisms. Resveratrol, having robust anti-inflammatory and anti-oxidant properties, has a high potential to treat or prevent the pathogenesis of diseases. This study was conducted to reveal the relationship between diabetes-induced oxidative stress and tissue inflammation with changes in main enzymatic antioxidants (cat, sod, gpx, and gst) and the components of the insulin signaling pathway (insulin Rβ, irs-1, pi3k, akt, mtor) in kidney tissues. Additionally, the effects of resveratrol on these parameters were evaluated. Materials and Methods: Male Wistar rats were randomly divided into four groups; (1) control/vehicle; (2) control/20 mg/kg resveratrol; (3) diabetic/vehicle; (4) diabetic/20 mg/kg resveratrol. Gene and protein expressions of antioxidant enzymes and insulin signaling elements were evaluated in renal tissues. Results: Downregulation of antioxidant enzymes’ gene expression in the kidney tissues of diabetic rats was demonstrated and this situation was devoted partially to the reduced gene expression of nfκb. Moreover, the components of renal insulin signaling elements were upregulated at both gene and protein expression levels in diabetic rats, and resveratrol treatment decreased this sensitization towards the control state. Conclusion: Resveratrol partially improved diabetes-induced renal oxidative stress and inflammation due to healing action on renal antioxidant enzymes and insulin signaling pathway components.


Sign in / Sign up

Export Citation Format

Share Document