Diosgenin Suppresses Hepatocyte Growth Factor (HGF)-Induced Epithelial–Mesenchymal Transition by Down-regulation of Mdm2 and Vimentin

2011 ◽  
Vol 59 (10) ◽  
pp. 5357-5363 ◽  
Author(s):  
Hsiang-Yu Chang ◽  
Ming-Ching Kao ◽  
Tzong-Der Way ◽  
Chi-Tang Ho ◽  
Earl Fu
2000 ◽  
Vol 11 (10) ◽  
pp. 3397-3410 ◽  
Author(s):  
Tanya M. Fournier ◽  
Louie Lamorte ◽  
Christiane R. Maroun ◽  
Mark Lupher ◽  
Hamid Band ◽  
...  

Dispersal of epithelial cells is an important aspect of tumorigenesis, and invasion. Factors such as hepatocyte growth factor induce the breakdown of cell junctions and promote cell spreading and the dispersal of colonies of epithelial cells, providing a model system to investigate the biochemical signals that regulate these events. Multiple signaling proteins are phosphorylated in epithelial cells during hepatocyte growth factor–induced cell dispersal, including c-Cbl, a protooncogene docking protein with ubiquitin ligase activity. We have examined the role of c-Cbl and a transforming variant (70z-Cbl) in epithelial cell dispersal. We show that the expression of 70z-Cbl in Madin-Darby canine kidney epithelial cells resulted in the breakdown of cell–cell contacts and alterations in cell morphology characteristic of epithelial–mesenchymal transition. Structure–function studies revealed that the amino-terminal portion of c-Cbl, which corresponds to the Cbl phosphotyrosine-binding/Src homology domain 2 , is sufficient to promote the morphological changes in cell shape. Moreover, a point mutation at Gly-306 abrogates the ability of the Cbl Src homology domain 2 to induce these morphological changes. Our results identify a role for Cbl in the regulation of epithelial–mesenchymal transition, including loss of adherens junctions, cell spreading, and the initiation of cell dispersal.


Author(s):  
Jun-Jun Wei ◽  
Li Tang ◽  
Liang-Liang Chen ◽  
Zhen-Hua Xie ◽  
Yu Ren ◽  
...  

Background: Mesenchymal stem cells (MSCs) have recently shown promise for the treatment of various types of chronic kidney disease models. However, the mechanism of this effect is still not well understood. Our study is aimed to investigate the effect of MSCs on transforming growth factor beta 1 (TGF-β1)-induced epithelial mesenchymal transition (EMT) in renal tubular epithelial cells (HK-2 cells) and the underlying mechanism related to the reciprocal balance between hepatocyte growth factor (HGF) and TGF-β1. Methods: Our study was performed at Ningbo University, Ningbo, Zhejiang, China between Mar 2017 and Jun 2018. HK-2 cells were initially treated with TGF-β1,then co-cultured with MSCs. The induced EMT was assessed by cellular morphology and the expressions of alpha-smooth muscle actin (α-SMA) and EMT-related proteins. MTS assay and flow cytometry were employed to detect the effect of TGF-β1 and MSCs on HK-2 cell proliferation and apoptosis. SiRNA against hepatocyte growth factor (siHGF) was transfected to decrease the expression of HGF to identify the role of HGF in MSCs inhibiting HK-2 cells EMT. Results: Overexpressing TGF-β1 decreased HGF expression, induced EMT, suppressed proliferation and promoted apoptosis in HK-2 cells; but when co-cultured with MSCs all the outcomes were reversed. However, after treated with siHGF, all the benefits taken from MSCs vanished. Conclusion: TGF-β1 was a motivating factor of kidney cell EMT and it suppressed the HGF expression. However, MSCs provided protection against EMT by increasing HGF level and decreasing TGF-β1 level. Our results also demonstrated HGF is one of the critical factor in MSCs anti- fibrosis.  


2000 ◽  
Vol 11 (5) ◽  
pp. 1709-1725 ◽  
Author(s):  
Isabelle Royal ◽  
Nathalie Lamarche-Vane ◽  
Louie Lamorte ◽  
Kozo Kaibuchi ◽  
Morag Park

Hepatocyte growth factor (HGF), the ligand for the Met receptor tyrosine kinase, is a potent modulator of epithelial–mesenchymal transition and dispersal of epithelial cells, processes that play crucial roles in tumor development, invasion, and metastasis. Little is known about the Met-dependent proximal signals that regulate these events. We show that HGF stimulation of epithelial cells leads to activation of the Rho GTPases, Cdc42 and Rac, concomitant with the formation of filopodia and lamellipodia. Notably, HGF-dependent activation of Rac but not Cdc42 is dependent on phosphatidylinositol 3-kinase. Moreover, HGF-induced lamellipodia formation and cell spreading require phosphatidylinositol 3-kinase and are inhibited by dominant negative Cdc42 or Rac. HGF induces activation of the Cdc42/Rac-regulated p21-activated kinase (PAK) and c-Jun N-terminal kinase, and translocation of Rac, PAK, and Rho-dependent Rho-kinase to membrane ruffles. Use of dominant negative and activated mutants reveals an essential role for PAK but not Rho-kinase in HGF-induced epithelial cell spreading, whereas Rho-kinase activity is required for the formation of focal adhesions and stress fibers in response to HGF. We conclude that PAK and Rho-kinase play opposing roles in epithelial–mesenchymal transition induced by HGF, and provide new insight regarding the role of Cdc42 in these events.


2015 ◽  
Vol 92 (2) ◽  
Author(s):  
Khaleque Newaz Khan ◽  
Michio Kitajima ◽  
Koichi Hiraki ◽  
Akira Fujishita ◽  
Masahiro Nakashima ◽  
...  

2012 ◽  
Vol 287 (15) ◽  
pp. 11850-11858 ◽  
Author(s):  
Wenjuan Zhang ◽  
Michelle C. Mendoza ◽  
Xiaolei Pei ◽  
Didem Ilter ◽  
Sarah J. Mahoney ◽  
...  

The acquisition of an invasive phenotype is a critical turning point for malignant tumor cells. CMTM8, a potential tumor suppressor, is frequently down-regulated in solid tumors, and its overexpression induces tumor cell apoptosis. Here, we identify a new role for CMTM8 in regulating tumor cell migration. Reducing CMTM8 expression in HepG2 hepatocellular carcinoma cells results in the acquisition of epithelial-to-mesenchymal transition (EMT) features, including a morphological change from organized epithelial sheets to scattered fibroblast-like shapes, reduction of the epithelial marker E-cadherin, and an increased invasive and migratory ability. These phenotypic changes are mediated in large part by the ERK-MAPK pathway, as the MEK inhibitor U0126 and shRNA-mediated knockdown of ERK2 significantly reversed these phenotypes. Hepatocyte growth factor binding to the c-MET receptor is known to induce EMT in HepG2 cells. We found that CMTM8 knockdown in HepG2 cells induced c-MET signaling and ERK activation. Inhibition of c-MET signaling with the small molecule inhibitor SU11274 or c-MET RNAi blocked the EMT-like changes following CMTM8 knockdown. CMTM8 overexpression in HepG2 cells inhibited hepatocyte growth factor-induced EMT-like morphological changes and cell motility. Down-regulation of CMTM8 also promoted an EMT-like change in MCF-10A cells, indicating a broader role for CMTM8 in regulating cellular transformation.


Sign in / Sign up

Export Citation Format

Share Document