Home Cooking and Phenolics: Effect of Thermal Treatment and Addition of Extra Virgin Olive Oil on the Phenolic Profile of Tomato Sauces

2014 ◽  
Vol 62 (14) ◽  
pp. 3314-3320 ◽  
Author(s):  
Anna Vallverdú-Queralt ◽  
Jorge Regueiro ◽  
José Fernando Rinaldi de Alvarenga ◽  
Xavier Torrado ◽  
Rosa M. Lamuela-Raventos
2021 ◽  
Vol 141 ◽  
pp. 322-329
Author(s):  
Jihed Faghim ◽  
Mbarka Ben Mohamed ◽  
Mohamed Bagues ◽  
Kamel Nagaz ◽  
Tebra Triki ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2345 ◽  
Author(s):  
Irene Dini ◽  
Giulia Graziani ◽  
Anna Gaspari ◽  
Francesca Luisa Fedele ◽  
Andrea Sicari ◽  
...  

The health advantages of extra-virgin olive oil (EVOO) are ascribed mainly to the antioxidant ability of the phenolic compounds. Secoiridoids, hydroxytyrosol, tyrosol, phenolic acid, and flavones, are the main nutraceutical substances of EVOO. Applications of beneficial microbes and/or their metabolites impact the plant metabolome. In this study the effects of application of selected Trichoderma strains or their effectors (secondary metabolites) on the phenolic compounds content and antioxidant potential of the EVOOs have been evaluated. For this purpose, Trichoderma virens (strain GV41) and Trichoderma harzianum (strain T22), well-known biocontrol agents, and two their metabolites harzianic acid (HA) and 6-pentyl-α-pyrone (6PP) were been used to treat plants of Olea europaea var. Leccino and var. Carolea. Then the nutraceutical potential of EVOO was evaluated. Total phenolic content was estimated by Folin–Ciocalteau’s assay, metabolic profile by High-Resolution Mass spectroscopy (HRMS-Orbitrap), and antioxidant activity by DPPH and ABTS assays. Our results showed that in the cultivation of the olive tree, T22 and its metabolites improve the nutraceutical value of the EVOOs modulating the phenolic profile and improving antioxidants activity.


2021 ◽  
Vol 336 ◽  
pp. 127730
Author(s):  
A. Castillo-Luna ◽  
I. Criado-Navarro ◽  
C.A. Ledesma-Escobar ◽  
M.A. López-Bascón ◽  
F. Priego-Capote

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 877
Author(s):  
Anallely López-Yerena ◽  
Antonia Ninot ◽  
Núria Jiménez-Ruiz ◽  
Julián Lozano-Castellón ◽  
Maria Pérez ◽  
...  

The ancient ‘Corbella’ olive variety from the center-north of Catalonia is being recovered to obtain quality extra-virgin olive oil (EVOO) with unique organoleptic properties. The aim of this work was to determine the effect of agronomic and technical factors on the phenolic fingerprint of EVOO and to establish the optimum harvesting time and crushing and malaxation conditions for ‘Corbella’ olives. Therefore, three different ripening indices (0.3, 1.2, and 3.2) and three crushing temperatures (10, 18, and 25 OC) were studied. Additionally, a factorial design to optimize the phenolic concentration of the EVOO was developed, applying a range of sieve diameters (4 and 6 mm), and malaxation time (30 and 60 min) and temperature (27, 32, and 37 °C). The phenolic profile was analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in a tandem detector. The level of secoiridoids, the major phenolic compounds in the oil, was higher when using olives harvested earlier. Oleuropein aglycone and ligstroside aglycone were degraded during crushing at high temperatures, resulting in the formation of oleacein and oleocanthal. The best processing conditions in terms of total phenolic content were found to be 30 min of malaxation at 37 OC, the crushing size not having any affect.


Author(s):  
M. Leporini, M. R. Loizzo, M. C. Tenuta, T. Falco ◽  
Vincenzo Sicari, Teresa M. Pellicano ◽  
Rosa Tundis

Extra virgin olive oil (EVOO) plays a crucial role in the Mediterranean diet. Recently, attention has been focused on presence in EVOO of phenolic compounds, phytochemicals characterized by a series of healthy properties. This paper analyzed the phenolic profile, the inhibitory activity against carbohydrate hydrolising enzyme as well as the radical scavenging activity of EVOO obtained from Olea europea L. cv. Frantoio. Samples derived from fruits collected in four different areas: Cariati, Vaccarizzo Albanese, Montalto Uffugo, and Praia a Mare. The phenolic profile obtained by HPLC revealed the presence of hydroxytyrosol (3,4-DHPEA, between 1.2 and 5.3 mg/kg) and p-hydroxyphenylethanol or tyrosol (p-HPEA, between 1.1 and 5.4 mg/kg), as the main components. Secoiridoids and their derivatives were also found in high concentrations (3,4-DHPEA-EDA 50.3-98.4 mg/kg, p-HPEA-EDA 34.6-52.9 mg/kg). All samples showed carbohydrate-hydrolyzing enzymes inhibition. The most promising activity was observed with EVOO from Vaccarizzo Albanese (IC50 of 65.5 and 57.7 µg/ml against α-glucosidase and α-amylase, respectively). The same sample showed the highest antioxidant activity of 45.3 and 56.3 µg/ml against DPPH and ABTS radicals, respectively. This sample was richest in phenols. In conclusion, EVOO has high-level bioactive compounds and a promising antioxidant and hypoglycemic activity.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 284 ◽  
Author(s):  
Irene Dini ◽  
Giulia Graziani ◽  
Francesca Luisa Fedele ◽  
Andrea Sicari ◽  
Francesco Vinale ◽  
...  

Olive trees are grown on five continents. Fertilization of fields, pest control management, olive leaves, olive pomaces, and olive mill wastewaters have a substantial environmental impact. It is possible to reduce this problem by using organic products to cultivate and decrease olive oil processing waste by recovering the bioactive molecules. In this work, the effects of biostimulation, with beneficial microbes belonging to the Trichoderma genera, and with Trichoderma secondary metabolites (6PP and the HA) were evaluated on the phenolic profile and the antioxidant potential of extra-virgin olive oil (EVOO) and olive leaf samples to make them more commercially attractive as a source of phytochemicals useful for the pharmaceutical, cosmetic, and food industries. Phenolics were identified and quantified by a spectrometer method using Q Exactive Orbitrap UHPLC-MS/MS (Ultra High Pressure Liquid Chromatography). Antioxidant activity was evaluated spectrophotometrically by the DPPH test. The use of Trichoderma strains, 6PP (6-Pentyl-α-Pyrone) and HA (Harzianic Acid), was demonstrated as an effective strategy to increase the leaves’ economic value as a source of phytochemicals (flavonoids, lignans, and oleuropein) useful for food, pharmaceutical, and cosmetic industries.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1986 ◽  
Author(s):  
Anallely López-Yerena ◽  
Julián Lozano-Castellón ◽  
Alexandra Olmo-Cunillera ◽  
Anna Tresserra-Rimbau ◽  
Paola Quifer-Rada ◽  
...  

Extra-virgin olive oil (EVOO) is largely appreciated for its proven nutritional properties. Additionally, organic foods are perceived as healthier by consumers. In this context, the aim of the present study was to compare the phenolic profiles of EVOO from olives of the Hojiblanca variety, cultivated under organic and conventional systems. The quantification and identification of individual polyphenols was carried out by liquid chromatography coupled to mass spectrometry in tandem mode (LC-MS/MS). Significantly higher levels (p < 0.05) of phenolic compounds were found in organic EVOOs. The methodology used was able to detect previously unreported differences in bioactive components between organic and conventional EVOOs.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


Sign in / Sign up

Export Citation Format

Share Document