Citrus By-products, Lactic Acid Production by Fermentation of Citrus Peel Juice

1960 ◽  
Vol 8 (3) ◽  
pp. 236-238 ◽  
Author(s):  
J. J. Kagan ◽  
Walter. Pilnik ◽  
M. D. Smith
Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07079
Author(s):  
Joel Romial Ngouénam ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
Pierre Marie Kaktcham ◽  
Rukesh Maharjan ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Joel Romial Ngouénam ◽  
Pierre Marie Kaktcham ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
François Zambou Ngoufack

Lactic acid (LA) is used in food, cosmetic, chemical, and pharmaceutical industries and has recently attracted much attention in the production of biodegradable polymers. The expensive substances including carbon and nitrogen sources involved in its fermentative synthesis and the increasing market demand of LA have prompted scientists to look for inexpensive raw materials from which it can be produced. This research was aimed at determining the optimum conditions of lactic acid (LA) production from pineapple by-products and an inexpensive nitrogen source using Lactiplantibacillus plantarum strain 4O8. After collection and preparation of the carbon source (pineapple by-products) and nitrogen sources (by-products from fish, chicken, and beer brewing industries), they were used for the formulation of 4 different media in terms of nitrogen sources. Then, the proximate compositions of promising nitrogen sources were determined. This was followed by the screening of factors (temperature, carbon source, nitrogen source, MgSO4, MnSO4, FeSO4, KH2PO4, and KHPO4) influencing the production of LA using the definitive plan. Lastly, the optimization process was done using the central composite design. The highest LA productions ( 14.64 ± 0.05   g / l and 13.4 ± 0.02   g / l ) were obtained in production medium supplemented with chicken and fish by-products, respectively, making them the most promising sources of nitrogen. The proximate analysis of these nitrogen sources revealed that their protein contents were 83.00 ± 1.41 % DM and 74.00 ± 1.41 % DM for chicken by-products and fish by-products, respectively. Concerning the screening of factors, temperature, nitrogen source, and carbon source were the factors that showed a major impact on LA production in the production medium containing chicken by-products as nitrogen source. A pineapple by-product concentration of 141.75 g/l, a nitrogen source volume of 108.99 ml/l, and a temperature of 30.89°C were recorded as the optimum conditions for LA production. The optimization led to a 2.73-fold increase in LA production when compared with the production medium without nitrogen source. According to these results, chicken by-products are a promising and an inexpensive nitrogen source that can be an alternative to yeast extract in lactic acid production.


2013 ◽  
Vol 64 (3) ◽  
pp. 1211-1221 ◽  
Author(s):  
Abhinay Srivastava ◽  
Amrita Poonia ◽  
Abhishek Dutt Tripathi ◽  
Ravi Pratap Singh ◽  
Suresh Kumar Srivastava

2019 ◽  
Vol 103 (7) ◽  
pp. 3001-3013 ◽  
Author(s):  
Miloš Radosavljević ◽  
Jelena Pejin ◽  
Milana Pribić ◽  
Sunčica Kocić-Tanackov ◽  
Ranko Romanić ◽  
...  

2011 ◽  
Vol 65 (4) ◽  
pp. 411-422 ◽  
Author(s):  
Aleksandra Djukic-Vukovic ◽  
Ljiljana Mojovic ◽  
Dusanka Pejin ◽  
Maja Vukasinovic-Sekulic ◽  
Marica Rakin ◽  
...  

Lactic acid is a relatively cheap chemical with a wide range of applications: as a preservative and acidifying agent in food and dairy industry, a monomer for biodegradable poly-lactide polymers (PLA) in pharmaceutical industry, precursor and chemical feedstock for chemical, textile and leather industries. Traditional raw materials for fermentative production of lactic acid, refined sugars, are now being replaced with starch from corn, rice and other crops for industrial production, with a tendency for utilization of agro industrial wastes. Processes based on renewable waste sources have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials, reduction of storage costs) advantages. An intensive research interest has been recently devoted to develop and improve the lactic acid production on more complex industrial by-products, like thin stillage from bioethanol production, corncobs, paper waste, straw etc. Complex and variable chemical composition and purity of these raw materials and high nutritional requirements of Lare the main obstacles in these production processes. Media supplementation to improve the fermentation is an important factor, especially from an economic point of view. Today, a particular challenge is to increase the productivity of lactic acid production on complex renewable biomass. Several strategies are currently being explored for this purpose such as process integration, use of Lwith amylolytic activity, employment of mixed cultures of Land/or utilization of genetically engineered microorganisms. Modern techniques of genetic engineering enable construction of microorganisms with desired characteristics and implementation of single step processes without or with minimal pre-treatment. In addition, new bioreactor constructions (such as membrane bioreactors), utilization of immobilized systems are also being explored. Electrodialysis, bipolar membrane separation process, enhanced filtration techniques etc. can provide some progress in purification technologies, although it is still remaining the most expensive phase in the lactic acid production. A new approach of parallel production of lactic bacteria biomass with probiotic activity and lactic acid could provide additional benefit and profit rise in the production process.


2016 ◽  
Vol 70 (4) ◽  
pp. 435-449 ◽  
Author(s):  
Dragana Mladenovic ◽  
Aleksandra Djukic-Vukovic ◽  
Jelena Pejin ◽  
Suncica Kocic-Tanackov ◽  
Ljiljana Mojovic

In line with the goals of sustainable development and environmental protection today great attention is directed towards new technologies for waste and industrial by-products utilization. Waste products represent potentially good raw material for production other valuable products, such as bioethanol, biogas, biodiesel, organic acids, enzymes, microbial biomass, etc. Since the first industrial production to the present, lactic acid has found wide application in food, cosmetic, pharmaceutical and chemical industries. In recent years, the demand for lactic acid has been increasing considerably owing to its potential use as a monomer for the production of poly-lactic acid (PLA) polymers which are biodegradable and biocompatible with wide applications. Waste and industrial by-products such are whey, molasses, stillage, waste starch and lignocellulosic materials are a good source of fermentable sugars and many other substances of great importance for the growth of microorganisms, such as proteins, minerals and vitamins. Utilization of waste products for production of lactic acid could help to reduce the total cost of lactic acid production and except the economic viability of the process offers a solution of their disposal. Fermentation process depends on chemical and physical nature of feedstocks and the lactic acid producer. This review describes the characteristics, abilities and limits of microorganisms involved in lactic acid production, as well as the characteristics and types of waste products for lactic acid production. The fermentation methods that have been recently reported to improve lactic acid production are summarized and compared. In order to improve processes and productivity, fed-batch fermentation, fermentation with immobilized cell systems and mixed cultures and opportunities of open (non-sterilized) fermentation have been investigated.


2015 ◽  
Vol 20 (3) ◽  
pp. 369 ◽  
Author(s):  
Javier Antonio Gómez-Gómez ◽  
Catalina Giraldo-Estrada ◽  
David Habeych ◽  
Sandra Baena

This study evaluated lactic acid production through batch fermentation in a bioreactor with <em>Thermoanaerobacter</em> sp. strain USBA-018 and a chemically defined culture medium and with hydrolyzed pressed extract of <em>Aloe vera</em> peel (AHE). The strain USBA-018 fermented various sugars, but its primary end-product was L-lactic acid. Factors which influenced L- lactic acid production were pH, addition of yeast extract (YE) and manganese chloride. Under the most favorable growing conditions for the production of lactic acid, yield (Yp/s) increased from 0.66 to 0.96 g/g with a productivity (Qp) of 0.62 g.l-1.h and a maximum lactic acid concentration of 178 mM at 26 hours of fermentation. When AHE was used, 93.3 mM, or 0.175 g.h/L, was obtained. These results show the potential for transformation of sugars that strain USBA-018 offers, but additional studies are needed to find out if different strategies using AHE as carbon source can produce large enough quantities of lactic acid to allow AHE to become a low-cost alternative substrate.


Sign in / Sign up

Export Citation Format

Share Document