Utilization of brewing and malting by-products as carrier and raw materials in l-(+)-lactic acid production and feed application

2019 ◽  
Vol 103 (7) ◽  
pp. 3001-3013 ◽  
Author(s):  
Miloš Radosavljević ◽  
Jelena Pejin ◽  
Milana Pribić ◽  
Sunčica Kocić-Tanackov ◽  
Ranko Romanić ◽  
...  
2011 ◽  
Vol 65 (4) ◽  
pp. 411-422 ◽  
Author(s):  
Aleksandra Djukic-Vukovic ◽  
Ljiljana Mojovic ◽  
Dusanka Pejin ◽  
Maja Vukasinovic-Sekulic ◽  
Marica Rakin ◽  
...  

Lactic acid is a relatively cheap chemical with a wide range of applications: as a preservative and acidifying agent in food and dairy industry, a monomer for biodegradable poly-lactide polymers (PLA) in pharmaceutical industry, precursor and chemical feedstock for chemical, textile and leather industries. Traditional raw materials for fermentative production of lactic acid, refined sugars, are now being replaced with starch from corn, rice and other crops for industrial production, with a tendency for utilization of agro industrial wastes. Processes based on renewable waste sources have ecological (zero CO2 emission, eco-friendly by-products) and economical (cheap raw materials, reduction of storage costs) advantages. An intensive research interest has been recently devoted to develop and improve the lactic acid production on more complex industrial by-products, like thin stillage from bioethanol production, corncobs, paper waste, straw etc. Complex and variable chemical composition and purity of these raw materials and high nutritional requirements of Lare the main obstacles in these production processes. Media supplementation to improve the fermentation is an important factor, especially from an economic point of view. Today, a particular challenge is to increase the productivity of lactic acid production on complex renewable biomass. Several strategies are currently being explored for this purpose such as process integration, use of Lwith amylolytic activity, employment of mixed cultures of Land/or utilization of genetically engineered microorganisms. Modern techniques of genetic engineering enable construction of microorganisms with desired characteristics and implementation of single step processes without or with minimal pre-treatment. In addition, new bioreactor constructions (such as membrane bioreactors), utilization of immobilized systems are also being explored. Electrodialysis, bipolar membrane separation process, enhanced filtration techniques etc. can provide some progress in purification technologies, although it is still remaining the most expensive phase in the lactic acid production. A new approach of parallel production of lactic bacteria biomass with probiotic activity and lactic acid could provide additional benefit and profit rise in the production process.


Heliyon ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. e07079
Author(s):  
Joel Romial Ngouénam ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
Pierre Marie Kaktcham ◽  
Rukesh Maharjan ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 199 ◽  
Author(s):  
Ashish Manandhar ◽  
Ajay Shah

Lactic acid is an important chemical with numerous commercial applications that can be fermentatively produced from biological feedstocks. Producing lactic acid from corn grain could complement the use of already existing infrastructure for corn grain-based ethanol production with a higher value product. The objective of this study was to evaluate the techno-economic feasibility of producing 100,000 metric tons (t) of lactic acid annually from corn grain in a biorefinery. The study estimated the resources (equipment, raw materials, energy, and labor) requirements and costs to produce lactic acid from bacteria, fungi and yeast-based fermentation pathways. Lactic acid production costs were $1181, $1251 and $844, for bacteria, fungi and yeast, respectively. Genetically engineered yeast strains capable of producing lactic acid at low pH support significantly cheaper processes because they do not require simultaneous neutralization and recovery of lactic acid, resulting in lower requirements for chemical, equipment, and utilities. Lactic acid production costs were highly sensitive to sugar-to-lactic-acid conversion rates, grain price, plant size, annual operation hours, and potential use of gypsum. Improvements in process efficiencies and lower equipment and chemical costs would further reduce the cost of lactic acid production from corn grain.


1960 ◽  
Vol 8 (3) ◽  
pp. 236-238 ◽  
Author(s):  
J. J. Kagan ◽  
Walter. Pilnik ◽  
M. D. Smith

2005 ◽  
Vol 96 (13) ◽  
pp. 1492-1498 ◽  
Author(s):  
Hurok Oh ◽  
Young-Jung Wee ◽  
Jong-Sun Yun ◽  
Seung Ho Han ◽  
Sangwon Jung ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Joel Romial Ngouénam ◽  
Pierre Marie Kaktcham ◽  
Chancel Hector Momo Kenfack ◽  
Edith Marius Foko Kouam ◽  
François Zambou Ngoufack

Lactic acid (LA) is used in food, cosmetic, chemical, and pharmaceutical industries and has recently attracted much attention in the production of biodegradable polymers. The expensive substances including carbon and nitrogen sources involved in its fermentative synthesis and the increasing market demand of LA have prompted scientists to look for inexpensive raw materials from which it can be produced. This research was aimed at determining the optimum conditions of lactic acid (LA) production from pineapple by-products and an inexpensive nitrogen source using Lactiplantibacillus plantarum strain 4O8. After collection and preparation of the carbon source (pineapple by-products) and nitrogen sources (by-products from fish, chicken, and beer brewing industries), they were used for the formulation of 4 different media in terms of nitrogen sources. Then, the proximate compositions of promising nitrogen sources were determined. This was followed by the screening of factors (temperature, carbon source, nitrogen source, MgSO4, MnSO4, FeSO4, KH2PO4, and KHPO4) influencing the production of LA using the definitive plan. Lastly, the optimization process was done using the central composite design. The highest LA productions ( 14.64 ± 0.05   g / l and 13.4 ± 0.02   g / l ) were obtained in production medium supplemented with chicken and fish by-products, respectively, making them the most promising sources of nitrogen. The proximate analysis of these nitrogen sources revealed that their protein contents were 83.00 ± 1.41 % DM and 74.00 ± 1.41 % DM for chicken by-products and fish by-products, respectively. Concerning the screening of factors, temperature, nitrogen source, and carbon source were the factors that showed a major impact on LA production in the production medium containing chicken by-products as nitrogen source. A pineapple by-product concentration of 141.75 g/l, a nitrogen source volume of 108.99 ml/l, and a temperature of 30.89°C were recorded as the optimum conditions for LA production. The optimization led to a 2.73-fold increase in LA production when compared with the production medium without nitrogen source. According to these results, chicken by-products are a promising and an inexpensive nitrogen source that can be an alternative to yeast extract in lactic acid production.


2017 ◽  
Vol 123 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Masanori Watanabe ◽  
Charin Techapun ◽  
Ampin Kuntiya ◽  
Noppol Leksawasdi ◽  
Phisit Seesuriyachan ◽  
...  

2013 ◽  
Vol 64 (3) ◽  
pp. 1211-1221 ◽  
Author(s):  
Abhinay Srivastava ◽  
Amrita Poonia ◽  
Abhishek Dutt Tripathi ◽  
Ravi Pratap Singh ◽  
Suresh Kumar Srivastava

Sign in / Sign up

Export Citation Format

Share Document