Efficient and Facile Ar−Si Bond Cleavage by Montmorillonite KSF:  Synthetic and Mechanistic Aspects of Solvent-Free Protodesilylation Studied by Solution and Solid-State MAS NMR

2007 ◽  
Vol 72 (18) ◽  
pp. 7014-7017 ◽  
Author(s):  
Yossi Zafrani ◽  
Eytan Gershonov ◽  
Ishay Columbus
2019 ◽  
Author(s):  
Przemyslaw Rzepka ◽  
Zoltán Bacsik ◽  
Andrew J. Pell ◽  
Niklas Hedin ◽  
Aleksander Jaworski

Formation of CO<sub>3</sub><sup>2-</sup> and HCO<sub>3</sub><sup>-</sup> species without participation of the framework oxygen atoms upon chemisorption of CO<sub>2</sub> in zeolite |Na<sub>12</sub>|-A is revealed. The transfer of O and H atoms is very likely to have proceeded via the involvement of residual H<sub>2</sub>O or acid groups. A combined study by solid-state <sup>13</sup>C MAS NMR, quantum chemical calculations, and <i>in situ</i> IR spectroscopy showed that the chemisorption mainly occurred by the formation of HCO<sub>3</sub><sup>-</sup>. However, at a low surface coverage of physisorbed and acidic CO<sub>2</sub>, a significant fraction of the HCO<sub>3</sub><sup>-</sup> was deprotonated and transformed into CO<sub>3</sub><sup>2-</sup>. We expect that similar chemisorption of CO<sub>2</sub> would occur for low-silica zeolites and other basic silicates of interest for the capture of CO<sub>2</sub> from gas mixtures.


ChemInform ◽  
2016 ◽  
Vol 47 (8) ◽  
pp. no-no
Author(s):  
Ruiqiang Guo ◽  
Chuanlei Zhu ◽  
Zhe Sheng ◽  
Yanzhe Li ◽  
Wei Yin ◽  
...  

2016 ◽  
Vol 4 (34) ◽  
pp. 13183-13193 ◽  
Author(s):  
Ryohei Morita ◽  
Kazuma Gotoh ◽  
Mika Fukunishi ◽  
Kei Kubota ◽  
Shinichi Komaba ◽  
...  

We examined the state of sodium electrochemically inserted in HC prepared at 700–2000 °C using solid state Na magic angle spinning (MAS) NMR and multiple quantum (MQ) MAS NMR.


2005 ◽  
Vol 109 (39) ◽  
pp. 18310-18315 ◽  
Author(s):  
Ulla Gro Nielsen ◽  
Younkee Paik ◽  
Keinia Julmis ◽  
Martin A. A. Schoonen ◽  
Richard J. Reeder ◽  
...  

2007 ◽  
Vol 32 (4) ◽  
pp. 513-526 ◽  
Author(s):  
R. Kanthasamy ◽  
I. K. Mbaraka ◽  
B. H. Shanks ◽  
S. C. Larsen

2006 ◽  
Vol 6 (3) ◽  
pp. 852-856 ◽  
Author(s):  
X. R. Ye ◽  
C. Daraio ◽  
C. Wang ◽  
J. B. Talbot ◽  
S. Jin

We have successfully demonstrated a facile, solvent-free synthesis of highly crystalline and monodisperse Fe3O4 nanocrystallites at ambient temperature avoiding any heating. Solid state reaction of inorganic Fe(II) and Fe(III) salts with NaOH was found to produce highly crystalline Fe3O4 nanoparticles. The reaction, if carried out in the presence of surfactant such as oleic acid–oleylamine adduct, generated monodisperse Fe3O4 nanocrystals extractable directly from the reaction mixture. The extracted nanoparticles were capable of forming self-assembled, two-dimensional and uniform periodic array. The new process utilizes inexpensive and nontoxic starting materials, and does not require a use of high boiling point and toxic solvents, thus is amenable to an environmentally desirable, large-scale synthesis of nanocrystals.


1994 ◽  
Vol 116 (15) ◽  
pp. 6965-6966 ◽  
Author(s):  
Rene M. Williams ◽  
Jurriaan M. Zwier ◽  
Jan W. Verhoeven ◽  
Gerda H. Nachtegaal ◽  
Arno P. M. Kentgens

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4404
Author(s):  
Shengyang Guan ◽  
David C. Mayer ◽  
Christian Jandl ◽  
Sebastian J. Weishäupl ◽  
Angela Casini ◽  
...  

A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.


Sign in / Sign up

Export Citation Format

Share Document