Reaction of Phenols with the 2,2-Diphenyl-1-picrylhydrazyl Radical. Kinetics and DFT Calculations Applied To Determine ArO-H Bond Dissociation Enthalpies and Reaction Mechanism

2008 ◽  
Vol 73 (23) ◽  
pp. 9270-9282 ◽  
Author(s):  
Mario C. Foti ◽  
Carmelo Daquino ◽  
Iain D. Mackie ◽  
Gino A. DiLabio ◽  
K. U. Ingold

2019 ◽  
Author(s):  
Clare Bakewell ◽  
Martí Garçon ◽  
Richard Y Kong ◽  
Louisa O'Hare ◽  
Andrew J. P. White ◽  
...  

The reactions of an aluminium(I) reagent with a series of 1,2-, 1,3- and 1,5-dienes are reported. In the case of 1,3-dienes the reaction occurs by a pericyclic reaction mechanism, specifically a cheletropic cycloaddition, to form aluminocyclopentene containing products. This mechanism has been interrogated by stereochemical experiments and DFT calculations. The stereochemical experiments show that the (4+1) cycloaddition follows a suprafacial topology, while calculations support a concerted albeit asynchronous pathway in which the transition state demonstrates aromatic character. Remarkably, the substrate scope of the (4+1) cycloaddition includes dienes that are either in part, or entirely, contained within aromatic rings. In these cases, reactions occur with dearomatisation of the substrate and can be reversible. In the case of 1,2- or 1,5-dienes complementary reactivity is observed; the orthogonal nature of the C=C π-bonds (1,2-diene) and the homoconjugated system (1,5-diene) both disfavour a (4+1) cycloaddition. Rather, reaction pathways are determined by an initial (2+1) cycloaddition to form an aluminocyclopropane intermediate which can in turn undergo insertion of a further C=C π-bond leading to complex organometallic products that incorporate fused hydrocarbon rings.



Author(s):  
Reynier Suardíaz ◽  
Emily Lythell ◽  
Philip Hinchliffe ◽  
Marc van der Kamp ◽  
James Spencer ◽  
...  

Elucidation of the catalytic reaction mechanism of MCR-1 enzyme, responsible for the antimicrobial resistance to colistin, using DFT calculations on cluster models.



2021 ◽  
Author(s):  
Fabian A. Watt ◽  
Lukas Burkhardt ◽  
Roland Schoch ◽  
Stefan Mitzinger ◽  
Matthias Bauer ◽  
...  

We present the unprecedented <i>η</i>3-coordination of the 2-phosphaethynthiolate anion in the complex (PN)<sub>2</sub>La(SCP) (<b>2</b>) [PN = N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate bridged (PN)<sub>2</sub>La(<i>μ</i>-1,3-SCN)<sub>2</sub>La(PN)<sub>2</sub> (<b>3</b>) and azide bridged (PN)<sub>2</sub>La(<i>μ</i>-1,3-N3)<sub>2</sub>La(PN)<sub>2</sub> (<b>4</b>) complexes indicates that the [SCP]<sup>–</sup> coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π-orbital of the [SCP]<sup>–</sup> ligand to the LUMO of complex <b>2</b>, rendering it the ideal precursor for the first functionalization of the [SCP]<sup>–</sup> anion. Complex <b>2</b> was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]<sup>–</sup> ligand to form the first CAAC stabilized group 15 – group 16 fulminate-type complexes (PN)<sub>2</sub>La{SPC(<sup>R</sup>CAAC)} (<b>5a,b</b>) (R = Ad, Me). A detailed reaction mechanism for the SCP to SPC isomerization is proposed based on DFT calculations.



2015 ◽  
Vol 17 (17) ◽  
pp. 11499-11508 ◽  
Author(s):  
Shu-Juan Lin ◽  
Jing Cheng ◽  
Chang-Fu Zhang ◽  
Bin Wang ◽  
Yong-Fan Zhang ◽  
...  

DFT calculations were carried out to study the reaction mechanism for tungsten oxide clusters with CO.



2019 ◽  
Vol 21 (31) ◽  
pp. 17221-17231 ◽  
Author(s):  
Vicent S. Safont ◽  
Iván Sorribes ◽  
Juan Andrés ◽  
Rosa Llusar ◽  
Mónica Oliva ◽  
...  

Transfer hydrogenation cluster catalysis operates through a panoply of cycles, according to DFT calculations, affording a highly efficient catalyst.





2018 ◽  
Vol 20 (36) ◽  
pp. 23311-23319 ◽  
Author(s):  
Po-Yu Yang ◽  
Hsing-Yin Chen ◽  
Shin-Pon Ju ◽  
Chia-Lin Chang ◽  
Gao-Shee Leu ◽  
...  

The detailed reaction mechanism of naphthalene catalytic polymerization by HF/BF3 has been investigated by DFT calculations and the directionality of the naphthalene-derived mesophase molecule has been explained.



2019 ◽  
Vol 43 (48) ◽  
pp. 19308-19317 ◽  
Author(s):  
Zhao Liang ◽  
Chao Liu ◽  
Mingwei Chen ◽  
Xiaopeng Qi ◽  
Pramod Kumar U. ◽  
...  

DFT calculations confirmed that the P–N coupled site changed the ORR pathway and improved the catalytic activity compared with single doping.



2020 ◽  
Vol 92 (1) ◽  
pp. 151-166 ◽  
Author(s):  
Luís M. T. Frija ◽  
Bruno G. M. Rocha ◽  
Maxim L. Kuznetsov ◽  
Lília I. L. Cabral ◽  
M. Lurdes S. Cristiano ◽  
...  

AbstractA new (tetrazole-saccharin)nickel complex is shown to be a valuable catalyst for the hydrosilative reduction of aldehydes under microwave radiation at low temperatures. With typical 1 mol% content of the catalyst (microwave power range of 5–15 W) most reactions are complete within 30 min. The Ni(II)-catalyzed reduction of aldehydes, with a useful scope, was established for the first time by using this catalyst, and is competitive with the most effective transition-metal catalysts known for such transformation. The catalyst reveals tolerance to different functional groups, is air and moisture stable, and is readily prepared in straightforward synthetic steps. Supported by experimental data and DFT calculations, a plausible reaction mechanism involving the new catalytic system is outlined.



2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hong Zhi Li ◽  
Lin Li ◽  
Zi Yan Zhong ◽  
Yi Han ◽  
LiHong Hu ◽  
...  

The paper suggests a new method that combines the Kennard and Stone algorithm (Kenstone, KS), hierarchical clustering (HC), and ant colony optimization (ACO)-based extreme learning machine (ELM) (KS-HC/ACO-ELM) with the density functional theory (DFT) B3LYP/6-31G(d) method to improve the accuracy of DFT calculations for the Y-NO homolysis bond dissociation energies (BDE). In this method, Kenstone divides the whole data set into two parts, the training set and the test set; HC and ACO are used to perform the cluster analysis on molecular descriptors; correlation analysis is applied for selecting the most correlated molecular descriptors in the classes, and ELM is the nonlinear model for establishing the relationship between DFT calculations and homolysis BDE experimental values. The results show that the standard deviation of homolysis BDE in the molecular test set is reduced from 4.03 kcal mol−1calculated by the DFT B3LYP/6-31G(d) method to 0.30, 0.28, 0.29, and 0.32 kcal mol−1by the KS-ELM, KS-HC-ELM, and KS-ACO-ELM methods and the artificial neural network (ANN) combined with KS-HC, respectively. This method predicts accurate values with much higher efficiency when compared to the larger basis set DFT calculation and may also achieve similarly accurate calculation results for larger molecules.



Sign in / Sign up

Export Citation Format

Share Document