Copper Excess Reduces the Fluidity of Plasma Membrane Lipids of Wheat Roots:  a Spin Probe EPR Study

2003 ◽  
Vol 107 (43) ◽  
pp. 12021-12028 ◽  
Author(s):  
Lucia Calucci ◽  
Calogero Pinzino ◽  
Mike F. Quartacci ◽  
Flavia Navari-Izzo
2002 ◽  
Vol 45 (2) ◽  
pp. 235-239 ◽  
Author(s):  
M.M.F. Mansour ◽  
K.H.A. Salama ◽  
M.M. Al-Mutawa ◽  
A.F. Hadid

2021 ◽  
Vol 7 (7) ◽  
pp. 514
Author(s):  
Mariangela Dionysopoulou ◽  
George Diallinas

Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Shuhui Wang ◽  
Gregory Brubaker ◽  
Kailash Gulshan ◽  
Jonathan D Smith

Objective— Lipid-poor apoA-I acts as an acceptor for cell cholesterol and phospholipids via the cell membrane protein ABCA1, generating nascent HDL. However, the mechanism of this process is not understood at the molecular level. Methods and Results— We propose a novel five-step model of nascent HDL biogenesis: ABCA1 remodeling of the plasma membrane lipids exposing phosphatidylserine and apoA-I binding to ABCA1 are the first two independent steps; third, ABCA1 facilitates apoA-I partial unfolding; forth, partially unfolded apoA-I inserts into the modified plasma membrane resulting in apoA-I lipidation; and fifth, nascent HDL is released from the cell. We created fluorescent apoA-I indicators that can monitor apoA-I unfolding and lipidation states. In cell free assays of reconstituted HDL (rHDL) generation from apoAI and DMPC liposomes, the fluorescent indicators demonstrated apoA-I unfolding and lipidation concurrent with rHDL formation. Next, HEK293 cells were stably transfected with different ABCA1 vectors encoding wild type (WT) and W590S and C1477R Tangier disease mutation isoforms. WT ABCA1 mediated cholesterol efflux to apoA-I (requires all steps) and sodium taurocholate (NaTC, requires only the membrane remodeling step,). Although neither mutant could efflux cholesterol efficiently to apoA-I, they were blocked at different steps. The W590S mutant bound apoAI but could not efflux cholesterol to NaTC, thus it was blocked at the membrane remodeling step. However, the C1477R mutant could not bind apoAI but could efflux cholesterol to NaTC, thus its activity was blocked at the apoAI binding step. When the lipidation indicator apoA-I was incubated with stably transfected HEK cells, we observed cell associated lipidated apoA-I in cells expressing WT ABCA1, but mostly unlipidated apoA-I was associated with the cells expressing W590S ABCA1. Conclusion— Our results support a novel five-step model for nascent HDL biogenesis: 1, 2) ABCA1 remodeling of the plasma membrane and apoA-I binding to ABCA1, which facilitate 3) apoA-I partial unfolding and 4) and lipidation by the remodeled membrane, followed by 5) the release of nascent HDL.


1977 ◽  
Vol 27 (1) ◽  
pp. 167-181
Author(s):  
J.J. Deman ◽  
E.A. Bruyneel

The intercellular adhesiveness of density-inhibited (D.I.) and fast-growing (F.G.) HeLa cells and of trypsin-treated preparations of these, has been measured at temperatures between 37 and 6 degrees C. In EDTA-containing buffer medium, F.G. cells differ from D.I. cells in that only the former display an increase in adhesiveness below 30 degrees C. This increase is prevented by previous treatment with trypsin. The presence of Ca2+ in the buffer medium causes a narrowing of the thermal transition region of intact F.G. cells. On intact D.I. cells Ca2+ causes an increase in adhesiveness at temperatures below 20 degrees C. Previous trypsinization of F.G. cells diminishes the effect of subsequent Ca2+ addition. The adhesiveness of trypsinized D.I. cells is indifferent to changes in temperature in Ca2+-containing buffer medium. The results are considered evidence for the occurrence of a phase transition in the glycoprotein domains of the plasma membrane of fast-growing cells. The transition is influenced by growth rate, trypsinization and Ca2+. The fluidity of the membrane glycoproteins is considered to be higher on density-inhibited cells than on fast-growing cells. No phase transition could be detected after incorporation of the fluorescent compound 1,6-diphenyl 1,3,5-hexatriene into the lipid domain of the plasma membrane. The fluidity of the membrane lipids is lower on density-inhibited cells than on fast-growing cells.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190803 ◽  
Author(s):  
Eugenia Cammarota ◽  
Chiara Soriani ◽  
Raphaelle Taub ◽  
Fiona Morgan ◽  
Jiro Sakai ◽  
...  

Signalling is of particular importance in immune cells, and upstream in the signalling pathway many membrane receptors are functional only as complexes, co-locating with particular lipid species. Work over the last 15 years has shown that plasma membrane lipid composition is close to a critical point of phase separation, with evidence that cells adapt their composition in ways that alter the proximity to this thermodynamic point. Macrophage cells are a key component of the innate immune system, are responsive to infections and regulate the local state of inflammation. We investigate changes in the plasma membrane’s proximity to the critical point as a response to stimulation by various pro- and anti-inflammatory agents. Pro-inflammatory (interferon γ , Kdo 2-Lipid A, lipopolysaccharide) perturbations induce an increase in the transition temperature of giant plasma membrane vesicles; anti-inflammatory interleukin 4 has the opposite effect. These changes recapitulate complex plasma membrane composition changes, and are consistent with lipid criticality playing a master regulatory role: being closer to critical conditions increases membrane protein activity.


1997 ◽  
Vol 99 (2) ◽  
pp. 302-308 ◽  
Author(s):  
Guichang Zhang ◽  
Jan J. Slaski ◽  
Daniel J. Archambault ◽  
Gregory J. Taylor

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3529-3529
Author(s):  
Yolande Chen ◽  
Arinola Awomolo ◽  
Jorie Aardema ◽  
Michael Hession ◽  
Francisco Javier Gonzalez ◽  
...  

Abstract Cdc42 interacting protein 4 (CIP4) is a membrane-associated BAR protein, which also forms a complex via its SH3 domain with the dynamins (DNMs) and Wiskott-Aldrich Syndrome (WAS) protein. Thus, CIP4 remodels the plasma membrane and cortical actin cytoskeleton. To determine its physiological function, we generated CIP4-null mice. They displayed thrombocytopenia similar to that of WAS-null mice and have abnormal megakaryocytes (MKs) with decreased proplatelet formation and underdeveloped demarcation membrane system (DMS) (Chen et al, Blood 2013). The DMS is an extensive network of membrane tubules which serves as a membrane reservoir for proplatelet formation. The membranes are enriched for polyphosphoinositides that are docking sites for BAR proteins and for pleckstrin homology domain-containing proteins such as the dynamins. Still, the formation of the DMS is poorly understood. Dynamins are cell vesicle trafficking proteins that possess a GTPase domain. They induce neck vesicle constriction and scission from the plasma membrane. When the GTPase activity is abrogated, vesicle scission does not occur; instead, the plasma membrane invagination induced by the BAR proteins results in deep plasma membrane tubulations. Of the three dynamin isoforms, DNM3 participates in MK development including DMS formation (Reems et al, Exp Hematol 2008; Wang et al, Stem Cells Dev 2011). Moreover, a recent genome-wide association study suggested that an MK-specific DNM3 isoform might play a role in human platelet size determination (Nürnberg et al, Blood 2012). However the exact mechanism for dynamin’s participation in DMS formation is unclear. A double knockout for dynamin 1 and dynamin 3 in neurons causes accumulation of long invaginations from the plasma membrane (Ferguson and De Camilli, Nat Rev Mol Cell Biol 2012). We initially hypothesized that CIP4’s association with DNM3 contributes to the DMS development during platelet biogenesis and wanted to test for functional redundancy with other dynamins present in MKs and platelets. To determine if CIP4 interacts with dynamin in the MK lineage, we found that following either phorbol ester (PMA) or fibronectin stimulation in the human MK cell line CHRF-288, CIP4 co-precipitated with DNM3 and colocalized by confocal microscopy. To determine dynamin’s effect on membrane biophysical properties, we measured the fluorescence anisotropy, which reflects the disorder of membrane lipids due to movement and indicate membrane rigidity. Compared with controls in CHRF-288 cells, shRNA-mediated knockdown (KD) of DNM2 or DNM3 resulted in higher membrane rigidity in response to PMA. The strongest effect was seen in double KD cells with decreased fluidity by 2.6 ± 0.3%, which is similar to what was observed with CIP4 KD and is physiologically significant (Chen et al Blood 2013). KD of DNM2 resulted in aberrant morphology, greater cell diameter, and electron microscopy (EM) showed formation of new multivesicular bodies (MVBs) which are sorting compartments during α- and dense granules formation. Single DNM3 KD cells had no observable phenotype. EM imaging of DNM2 and DNM3 double KD cells revealed plasma membrane tubulation that resembles the DMS. While control CHRF-288 cells, with high DNM3 protein expression, do not have a DMS at baseline, MK cell lines Meg-01 and L8057, with respectively lower or no dynamin-3 protein expression, both have a DMS (Battinelli et al PNAS 2001; Ishida Y et al, Exp Hematol 1993). Platelet microparticles (MPs) are known to mediate a prothrombotic state in patients. Having previously found that CIP4-null mice show reduced levels of platelet MPs, we measured MPs in dynamin knockdown cell supernatant by flow cytometry and CD41/Annexin V staining. Surprisingly, we found that microparticle levels were increased 2.9-fold in DNM2 KD cells and 3.8-fold in double DNM2 and DNM3 KD cells. Our findings suggest that: 1) there is only partial functional redundancy between DNM2 and DNM3 in platelet biogenesis, 2) DNM2 controls MVB formation and MP release in MK cells, and 3) the CIP4-dynamin pathway contributes to DMS formation. It is possible that CIP4’s interaction with dynamins restrains their spatial and temporal activity to allow for long invaginations to accumulate in the DMS. Dynamin depletion might also increase surface membrane availability for MP formation. Dynamins are thus potential targets to modulate thrombotic state and platelet biogenesis. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document