Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells

2005 ◽  
Vol 109 (31) ◽  
pp. 14945-14953 ◽  
Author(s):  
Qing Wang ◽  
Jacques-E. Moser ◽  
Michael Grätzel
Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1547
Author(s):  
Mariia Becker ◽  
Maria-Sophie Bertrams ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

Dye-sensitized solar cell (DSC) technology has been broadly investigated over the past few decades. The sandwich-type structure of the DSC makes the manufacturing undemanding under laboratory conditions but results in the need for reproducible measurements for acceptable DSC characterization. Electrochemical impedance spectroscopy (EIS) offers the possibility to study complex electronic systems and is commonly used for solar cells. There is a tendency in the literature to present impedance data only for one representative device. At the same time, as current density–voltage plots illustrate, measurements can vary within one set of DSCs with identical components. We present multiple DSC impedance measurements on “identical” devices prepared using two different dyes and present a statistical analysis regarding the reproducibility.


Nanoscale ◽  
2016 ◽  
Vol 8 (41) ◽  
pp. 17963-17975 ◽  
Author(s):  
Oliver Langmar ◽  
Carolina R. Ganivet ◽  
Gema de la Torre ◽  
Tomás Torres ◽  
Rubén D. Costa ◽  
...  

2010 ◽  
Vol 1270 ◽  
Author(s):  
Braden Bills ◽  
Mariyappan Shanmugam ◽  
Mahdi Farrokh Baroughi ◽  
David Galipeau

AbstractThe performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.


2018 ◽  
Vol 5 (2) ◽  
pp. 171054 ◽  
Author(s):  
J. Llanos ◽  
I. Brito ◽  
D. Espinoza ◽  
Ramkumar Sekar ◽  
P. Manidurai

Y 1.86 Eu 0.14 WO 6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO 2 , sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffraction. The photoelectric conversion efficiency of the DSSC with TiO 2 :Y 1.86 Eu 0.14 WO 6 (100:2.5) was 25.8% higher than that of a DSCC using pure TiO 2 as PE. This high efficiency is due to the ability of the luminescent material to convert ultraviolet radiation from the sun to visible radiation, thus improving the solar light harvesting of the DSSC.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1645 ◽  
Author(s):  
Seong Il Cho ◽  
Hye Kyeong Sung ◽  
Sang-Ju Lee ◽  
Wook Hyun Kim ◽  
Dae-Hwan Kim ◽  
...  

At an elevated temperature of 90 °C, a chemical bath deposition using an aqueous solution of Zn(NO3)2·6H2O and (CH2)6N4 resulted in the formation of both nanoflowers and microrods of ZnO on F-doped SnO2 glass with a seed layer. The nanoflowers and microrods were sensitized with dyes for application to the photoelectrodes of dye-sensitized solar cells (DSSCs). By extending the growth time of ZnO, the formation of nanoflowers was reduced and the formation of microrods favored. As the growth time was increased from 4 to 6 and then to 8 h, the open circuit voltage (Voc) values of the DSSCs were increased, whilst the short circuit current (Jsc) values varied only slightly. Changes in the dye-loading amount, dark current, and electrochemical impedance were monitored and they revealed that the increase in Voc was found to be due to a retardation of the charge recombination between photoinjected electrons and I3− ions and resulted from a reduction in the surface area of ZnO microrods. A reduced surface area decreased the dye contents adsorbed on the ZnO microrods, and thereby decreased the light harvesting efficiency (LHE). An increase in the electron collection efficiency attributed to the suppressed charge recombination counteracted the decreased LHE, resulting in comparable Jsc values regardless of the growth time.


Sign in / Sign up

Export Citation Format

Share Document