Nanoporous Metal (Cu, Ag, Au) Films with High Surface Area:  General Fabrication and Preliminary Electrochemical Performance

2007 ◽  
Vol 111 (24) ◽  
pp. 8424-8431 ◽  
Author(s):  
Falong Jia ◽  
Chuanfang Yu ◽  
Kejian Deng ◽  
Lizhi Zhang
Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 773 ◽  
Author(s):  
Kai Wang ◽  
Chao Gao ◽  
Song-en Li ◽  
Jin-yu Wang ◽  
Xiao-dong Tian ◽  
...  

2017 ◽  
Vol 32 (11) ◽  
pp. 1181 ◽  
Author(s):  
WANG Hao ◽  
LI Lin ◽  
WANG Chun-Lei ◽  
WANG Qian ◽  
LIANG Chang-Hai ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 343 ◽  
Author(s):  
Deepa Guragain ◽  
Camila Zequine ◽  
Ram K Gupta ◽  
Sanjay R Mishra

In this project, we present a comparative study of the electrochemical performance for tubular MCo2O4 (M = Cr, Mn, Ni) microstructures prepared using cotton fiber as a bio-template. Crystal structure, surface properties, morphology, and electrochemical properties of MCo2O4 are characterized using X-ray diffraction (XRD), gas adsorption, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), cyclic voltammetry (CV), and galvanostatic charge-discharge cycling (GCD). The electrochemical performance of the electrode made up of tubular MCo2O4 structures was evaluated in aqueous 3M KOH electrolytes. The as-obtained templated MCo2O4 microstructures inherit the tubular morphology. The large-surface-area of tubular microstructures leads to a noticeable pseudocapacitive property with the excellent electrochemical performance of NiCo2O4 with specific capacitance value exceeding 407.2 F/g at 2 mV/s scan rate. In addition, a Coulombic efficiency ~100%, and excellent cycling stability with 100% capacitance retention for MCo2O4 was noted even after 5000 cycles. These tubular MCo2O4 microstructure display peak power density is exceeding 7000 W/Kg. The superior performance of the tubular MCo2O4 microstructure electrode is attributed to their high surface area, adequate pore volume distribution, and active carbon matrix, which allows effective redox reaction and diffusion of hydrated ions.


2016 ◽  
Vol 20 (9) ◽  
pp. 2403-2409 ◽  
Author(s):  
Bruna C. Lourencao ◽  
Tiago A. Silva ◽  
Hudson Zanin ◽  
Paul W. May ◽  
Evaldo J. Corat ◽  
...  

Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


Nanoscale ◽  
2015 ◽  
Vol 7 (25) ◽  
pp. 10974-10981 ◽  
Author(s):  
Xiulin Yang ◽  
Ang-Yu Lu ◽  
Yihan Zhu ◽  
Shixiong Min ◽  
Mohamed Nejib Hedhili ◽  
...  

High surface area FeP nanosheets on a carbon cloth were prepared by gas phase phosphidation of electroplated FeOOH, which exhibit exceptionally high catalytic efficiency and stability for hydrogen generation.


Sign in / Sign up

Export Citation Format

Share Document