scholarly journals Facile Synthesis of Bio-Template Tubular MCo2O4 (M = Cr, Mn, Ni) Microstructure and Its Electrochemical Performance in Aqueous Electrolyte

Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 343 ◽  
Author(s):  
Deepa Guragain ◽  
Camila Zequine ◽  
Ram K Gupta ◽  
Sanjay R Mishra

In this project, we present a comparative study of the electrochemical performance for tubular MCo2O4 (M = Cr, Mn, Ni) microstructures prepared using cotton fiber as a bio-template. Crystal structure, surface properties, morphology, and electrochemical properties of MCo2O4 are characterized using X-ray diffraction (XRD), gas adsorption, scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), cyclic voltammetry (CV), and galvanostatic charge-discharge cycling (GCD). The electrochemical performance of the electrode made up of tubular MCo2O4 structures was evaluated in aqueous 3M KOH electrolytes. The as-obtained templated MCo2O4 microstructures inherit the tubular morphology. The large-surface-area of tubular microstructures leads to a noticeable pseudocapacitive property with the excellent electrochemical performance of NiCo2O4 with specific capacitance value exceeding 407.2 F/g at 2 mV/s scan rate. In addition, a Coulombic efficiency ~100%, and excellent cycling stability with 100% capacitance retention for MCo2O4 was noted even after 5000 cycles. These tubular MCo2O4 microstructure display peak power density is exceeding 7000 W/Kg. The superior performance of the tubular MCo2O4 microstructure electrode is attributed to their high surface area, adequate pore volume distribution, and active carbon matrix, which allows effective redox reaction and diffusion of hydrated ions.

2020 ◽  
Vol 20 (5) ◽  
pp. 3182-3194 ◽  
Author(s):  
D. Guragain ◽  
C. Zequine ◽  
T. Poudel ◽  
D. Neupane ◽  
R. K. Gupta ◽  
...  

Template-assisted facile synthesis of tubular Co3O4 microstructures and its electrochemical performance was studied to understand its use as a potential electrode material for supercapacitors. Tubular porous Co3O4 microstructures were synthesized using cotton fibers as bio-template. The as-obtained templated Co3O4 structure inherits the morphology and microstructure of cotton fiber. The electrochemical performance of the electrode made up of tubular Co3O4 structure was evaluated in 3 M KOH, NaOH, and LiOH aqueous electrolytes. The large-surface-area of tubular Co3O4 microstructure has a noticeable pseudocapacitive performance with a capacitance of 401 F/g at 1 A/g and 828 F/g at 2 mV/s, a Coulombic efficiency averaging ~100%, and excellent cycling stability with capacitance retention of about 80% after 5,000 cycles. Overall, the tubular Co3O4 microstructure displayed superior electrochemical performance in 3 M KOH electrolyte with peak power density reaching 5,500 W/kg and energy density exceeding 22 Wh/kg. The superior performance of tubular Co3O4 microstructure electrode is attributed to its high surface area and adequate pore volume distribution, which allows effective redox reaction and diffusion of hydrated ions. The facile synthesis method can be adapted for preparing various metal oxide microstructures for possible applications in catalysis, electrochemical, sensors, and fuel cells applications.


Carbon ◽  
2019 ◽  
Vol 145 ◽  
pp. 773 ◽  
Author(s):  
Kai Wang ◽  
Chao Gao ◽  
Song-en Li ◽  
Jin-yu Wang ◽  
Xiao-dong Tian ◽  
...  

2015 ◽  
Vol 223 ◽  
pp. 104-108 ◽  
Author(s):  
Xiu-Liang Lv ◽  
Minman Tong ◽  
Hongliang Huang ◽  
Bin Wang ◽  
Lei Gan ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1269 ◽  
Author(s):  
Ahmed Hashem ◽  
Hanaa Abuzeid ◽  
Martin Winter ◽  
Jie Li ◽  
Christian Julien

With the aim to reduce the entire cost of lithium-ion batteries and to diminish the environmental impact, the extract of broccoli is used as a strong benign reducing agent for potassium permanganate to synthesize α-KyMnO2 cathode material with pure nanostructured phase. Material purity is confirmed by X-ray powder diffraction and thermogravimetric analyses. Images of transmission electron microscopy show samples with a spider-net shape consisting of very fine interconnected nanoneedles. The nanostructure is characterized by crystallite of 4.4 nm in diameter and large surface area of 160.7 m2 g−1. The material delivers an initial capacity of 211 mAh g−1 with high Coulombic efficiency of 99% and 82% capacity retention after 100 cycles. Thus, α-KyMnO2 synthesized via a green process exhibits very promising electrochemical performance in terms of initial capacity, cycling stability and rate capability.


2017 ◽  
Vol 32 (11) ◽  
pp. 1181 ◽  
Author(s):  
WANG Hao ◽  
LI Lin ◽  
WANG Chun-Lei ◽  
WANG Qian ◽  
LIANG Chang-Hai ◽  
...  

2019 ◽  
Vol 824 ◽  
pp. 1-7
Author(s):  
Nutchaporn Ngamthanacom ◽  
Napat Kaewtrakulchai ◽  
Weerawut Chaiwat ◽  
Laemthong Chuenchom ◽  
Masayoshi Fuji ◽  
...  

Waste lignin (WL) obtained from paper mills, was studied for its potential application in preparing carbon nanoparticles (CNPs) with high porosity. This was done by impregnation of 0, 5, 10 and 20% concentrations of phosphoric acid under various carbonization temperatures (600, 700, 800 and 900°C). The physicochemical properties of CNPs were characterized through nitrogen sorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Fourier transforms infrared spectroscopy (FTIR). Nitrogen sorption revealed that the condition using 10% concentration of phosphoric acid treatment at a carbonization temperature of 700°C formed carbon nanoparticles with a highly porous structure (Surface area 27.65 m2/g and pore volume 0.07 cm3/g). Additionally, in order to high surface area, porosity and concentrated carbon nanoparticle.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Pavuluri Srinivasu ◽  
Surya Prakash Singh ◽  
Ashraful Islam ◽  
Liyuan Han

Development of new counter electrode materials is vital for commercialization of efficient dye-sensitized solar cells (DSCs) process. Research on DSCs has been focused mainly on using platinum as counter electrode, which makes them expensive. In this paper, we report DSCs fabricated with high surface area mesoporous carbon thin film with uniform spherical particles as counter electrode. An overall light-to-electricity efficiency as high as 7.6% has been achieved under illumination of air mass (AM) 1.5 sunlight (100 mW/cm2). In comparison with activated carbon, high surface area mesoporous carbon shows superior performance. Our results show that mesoporous carbon with high specific surface area and uniform pore size distribution proved to be better efficient electrode material for DSCs.


Sign in / Sign up

Export Citation Format

Share Document